• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 37
  • 18
  • 7
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 138
  • 138
  • 134
  • 40
  • 27
  • 25
  • 23
  • 23
  • 16
  • 15
  • 14
  • 13
  • 13
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and synthesis of novel arabinose analogues as potential growth inhibitors of Mycobacterium tuberculosis

Jones, Richard Scott January 1999 (has links)
No description available.
2

Production, purification and partial characterization of antimycin antibiotics

Dunshee, Bryant Ray, January 1949 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1949. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
3

Isolation and characterization of antibiotics produced by Mycoplasma sp. RPIII

Sylvestre, Michel Alfred, January 1900 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1974. / Typescript. Vita. Description based on print version record. Includes bibliographical references.
4

X-ray crystallographic structure determination of dianemycin

Czerwinski, Edmund William January 1971 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).
5

Cost of antibiotics used for nosocomial infections in a neonatal unit at Kalafong Hospital

Kitambala, Sentime 05 1900 (has links)
A research report submitted to the Faculty of Health Sciences, University of the Witwatersrand, in partial fulfillment of the requirements for the degree of Master of Science in Medicine in Pharmaceutical Affairs Johannesburg, May 2012 / ABSTRACT Introduction Nosocomial infections which occur after 72 hours in hospitalised neonates cause morbidity and mortality particularly in very low birth weight neonates admitted to a neonatal intensive care unit (NICU). Prolonged hospitalisation and use of sophisticated, expensive antibiotics lead to spiraling costs. Prevention of nosocomial infections are of the essence to contain expenditure and prevent life-threatening complications in vulnerable neonates. A prospective, descriptive study was undertaken to determine the cost of antibiotics used in the neonatal unit at Kalafong Hospital for nosocomial infections. Patients and Methods Neonates with nosocomial infections admitted consecutively to the neonatal unit were studied prospectively by documenting the birth weight, site of infection, pathogen, outcome, admission to the NICU and antibiotics administered. The cost related to antibiotic use was determined for each antibiotic, for individual neonates (expressed as the mean and standard deviation) and for the group as a whole. Results Over a period of seven months (1/1/2011 - 31/7/2011) 682 neonates with a mean birth weight of 2375g, ±868g were admitted to the neonatal unit for ~72 hours of whom 53/682 (7.8%) developed a nosocomial infection and of the 53 who developed a nosocomial infection, eight demised (15.1 %). Of the remaining 629 neonates who did not develop a nosocomial infection, 15/629 (2.4%) demised (p=0.7). Nosocomial infection occurred in 21/36 (58%) neonates <1 OOOg vs 22/646 (3.4%) ~1 OOOg (p<0.01 ).Of 199/682 neonates admitted to the NICU, 42/199 (21.1 %) developed a nosocomial infection vs 11/483 (2 .3%) not admitted to the NICU (p=<0.01 ). Of 22 pathogens cultured from blood, coagulase negative Staphylococcus aureus was the most common (7/22). The total cost of second line antimicrobials (meropenem, vancomycin and fluconazole) for the study period of seven months was R27 032.00 of which an amount of R1 0 321.00 was spent on neonates weighing <1000g. The mean cost per neonate was R563.77±283 for meropenem (n=51), R70.23±32 for vancomycin (n=5) and R78.66±53 for fluconazole (n=6) of which drug wastage comprised at least 50% in each instance. Conclusions Extremely low birth weight ( <1 OOOg) and admission to the NICU place neonates at risk of nosocomial infection at Kalafong Hospital. Meropenem was the most commonly used second line) antibiotic followed by vancomycin and fluconazole. Pharmaceutical curtailment of expenditure generated by nosocomial infections should be addressed by the manufacture of vials with a lower concentration of drug for neonates to minimise wastage.
6

Preparation and characterization of peptide-directed polyclonal antibodies against angiotensin receptors.

January 1996 (has links)
Anita K.L. Yiu. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 93-112). / Acknowledgement --- p.i / List of Abbreviations --- p.ii / Abstract --- p.iv / Table of Contents --- p.vi / Chapter CHAPTER 1. --- Introduction / Chapter 1.1 --- The Renin-Angiotensin System (RAS) --- p.1 / Chapter 1.2 --- Physiology and Pathophysiology of Angiotensin --- p.3 / Chapter 1.3 --- Angiotensin Receptors / Chapter 1.3.1 --- Heterogeneity among Angiotensin Receptors --- p.10 / Chapter 1.3.2 --- Differential Distribution of Subtypes --- p.13 / Chapter 1.3.3 --- Molecular Structure of Subtypes --- p.15 / Chapter 1.3.4 --- Signal Transduction Mechanism --- p.20 / Chapter 1.3.5 --- Physiological Functional Correlates --- p.21 / Chapter 1.4 --- Aim of Study --- p.23 / Chapter CHAPTER 2. --- Preparation of Polyclonal Antibodies Against Angiotensin Receptors / Chapter 2.1 --- Introduction --- p.25 / Chapter 2.2 --- Methods / Chapter 2.2.1 --- Preparation of antisera / Chapter 2.2.1.1 --- Preparation of peptide conjugates --- p.25 / Chapter 2.2.1.2 --- Protein determination --- p.27 / Chapter 2.2.1.3 --- Immunization of rabbits with peptide conjugates --- p.27 / Chapter 2.2.1.4 --- Collection of rabbit sera --- p.28 / Chapter 2.2.1.5 --- Affinity purification of antisera --- p.28 / Chapter 2.2.2 --- Enzyme-linked immunosorbent assay (ELISA) / Chapter 2.2.2.1 --- Titer determination --- p.29 / Chapter 2.2.2.2 --- Specificity determination --- p.30 / Chapter 2.3 --- Results / Chapter 2.3.1 --- Preparation of antisera --- p.30 / Chapter 2.3.2 --- Affinity purification of antisera --- p.30 / Chapter 2.3.3 --- ELISA / Chapter 2.3.3.1 --- Titer determination --- p.31 / Chapter 2.3.3.1.1 --- Thy-AT1 antiserum --- p.31 / Chapter 2.3.3.1.2 --- Thy-AT2 antiserum --- p.32 / Chapter 2.3.3.2 --- Specificity determination --- p.32 / Chapter 2.3.3.2.1 --- Thy-AT1 antibodies --- p.32 / Chapter 2.3.3.2.2 --- Thy-AT2 antibodies --- p.49 / Chapter 2.4 --- Discussions --- p.49 / Chapter CHAPTER 3. --- Application of Thy-AT1 Antiserumin Western Blot / Chapter 3.1 --- Introduction --- p.52 / Chapter 3.2 --- Methods / Chapter 3.2.1 --- Preparation of protein samples --- p.52 / Chapter 3.2.2 --- Protein determination --- p.53 / Chapter 3.2.3 --- SDS-PAGE --- p.53 / Chapter 3.2.3 --- Western blot --- p.54 / Chapter 3.2.5 --- Immunoblotting --- p.54 / Chapter 3.3 --- Results --- p.55 / Chapter 3.4 --- Discussions --- p.58 / Chapter CHAPTER 4. --- Evaluation of Pancreatic Response to Angiotensin II / Chapter 4.1 --- Introduction --- p.61 / Chapter 4.2 --- Methods / Chapter 4.2.1 --- Perfusion of pancreas --- p.62 / Chapter 4.2.2 --- Assay of amylase activity --- p.64 / Chapter 4.2.3. --- Calculations --- p.64 / Chapter 4.3 --- Results --- p.65 / Chapter 4.4 --- Discussions --- p.65 / Chapter CHAPTER 5. --- Application of Purified Thy-AT2 Antibodies in immunohistochemical studies / Chapter 5.1 --- Introduction --- p.74 / Chapter 5.2 --- Methods / Chapter 5.2.1 --- Preparation of adrenal sections --- p.75 / Chapter 5.2.2 --- Light-microscopic immunohistochemical study --- p.76 / Chapter 5.3 --- Results / Chapter 5.4 --- Discussions / Chapter CHAPTER 6. --- General Discussions --- p.84 / References --- p.93 / Appendix / Chapter A. --- Materials --- p.113 / Chapter B. --- Buffer Compositions --- p.121
7

Antibiotic use and the risk of breast cancer /

Velicer, Christine M. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 46-53).
8

Studies on the immunomodulatory and antitumor activities of oxalysine and luffaculin.

January 1991 (has links)
by Chiu-lun Fok. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1991. / Includes bibliographical references. / List of Abbreviations --- p.i / Abstract --- p.iii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- General Properties of Oxalysine --- p.1 / Chapter 1.1.1 --- Chemical Structure and Properties --- p.1 / Chapter 1.1.2 --- Biological Properties --- p.2 / Chapter 1.1.2.1 --- Antimicrobial Activity --- p.2 / Chapter 1.1.2.2 --- Antitumor Activity --- p.2 / Chapter 1.1.2.3 --- Immunomodulatory Activity --- p.5 / Chapter 1.1.2.4 --- Other Biological Properties --- p.5 / Chapter 1.1.3 --- Pharmacokinetics and Toxicity --- p.6 / Chapter 1.2 --- General Properties of Ribosome-Inactivating and Abortifacient Proteins --- p.8 / Chapter 1.2.1 --- Research History --- p.8 / Chapter 1.2.1.1 --- Ribosome-Inactivating Proteins --- p.8 / Chapter 1.2.1.2 --- Abortifacient Proteins --- p.9 / Chapter 1.2.2 --- Relationship between Ribosome- Inactivating Proteins and Abortifacient Proteins --- p.10 / Chapter 1.2.3 --- Distribution --- p.11 / Chapter 1.2.4 --- Physicochemical Characteristics --- p.12 / Chapter 1.2.5 --- Biological Properties --- p.13 / Chapter 1.2.5.1 --- Effect on Protein Synthesis --- p.13 / Chapter 1.2.5.2 --- Effect on the Immune System --- p.14 / Chapter 1.2.5.3 --- Cytotoxic and Antitumor Activities --- p.16 / Chapter 1.2.5.4 --- Termination of Pregnancy --- p.17 / Chapter 1.2.5.5 --- Antiviral Activity --- p.18 / Chapter 1.2.6 --- The Study on Luffaculin --- p.19 / Chapter 1.3 --- Aim of the Present Study --- p.20 / Chapter 1.3.1 --- Oxalysine --- p.20 / Chapter 1.3.2 --- Luffaculin --- p.20 / Chapter Chapter 2 --- Materials and Methods --- p.22 / Chapter 2.1 --- Materials --- p.22 / Chapter 2.2 --- Methods --- p.30 / Chapter 2.2.1 --- In Vivo Drug Treatment --- p.30 / Chapter 2.2.2 --- Isolation and Preparation of Cells --- p.30 / Chapter 2.2.2.1 --- Peritoneal Exudate Cells --- p.30 / Chapter 2.2.2.2 --- Spleen Cells --- p.30 / Chapter 2.2.2.3 --- Ficoll-Paque Separation of Lymphocytes --- p.31 / Chapter 2.2.2.4 --- Congo Red-Stained Yeast Cells --- p.31 / Chapter 2.2.3 --- Lymphocyte Transformation --- p.32 / Chapter 2.2.4 --- Haemolytic Plaque Assay --- p.33 / Chapter 2.2.5 --- Phagocytic Activity --- p.33 / Chapter 2.2.6 --- Macrophage-Mediated Cytostatic Activity --- p.34 / Chapter 2.2.7 --- Delayed Type Hypersensitivity (DTH) --- p.35 / Chapter 2.2.8 --- Production of and Assay for Interleukin-2(IL-2) --- p.36 / Chapter 2.2.9 --- Cytotoxicity of the Drugs on Various Cell Lines --- p.38 / Chapter 2.2.9.1 --- Trypan Blue Exclusion Method --- p.38 / Chapter 2.2.9.2 --- Neutral Red Uptake Method --- p.38 / Chapter 2.2.10 --- Cytostatic Effect of the Drugs on Various Cell Lines --- p.39 / Chapter 2.2.11 --- Evaluation of Antitumor Activity (In Vivo ) --- p.40 / Chapter 2.2.11.1 --- Tumor Size --- p.40 / Chapter 2.2.11.2 --- Survival Study --- p.40 / Chapter 2.2.12 --- TLC Analysis --- p.40 / Chapter 2.2.13 --- Preparation of Ribosome-Inactivating and Abortifacient Proteins --- p.41 / Chapter 2.2.13.1 --- Trichosanthin (TCS) --- p.41 / Chapter 2.2.13.2 --- Luffaculin (LFC) --- p.42 / Chapter 2.2.14 --- Protein Determination --- p.42 / Chapter 2.2.15 --- Statistical Analysis --- p.43 / Chapter Chapter 3 --- The Immunomodulatory and Antitumor Activities of Oxalysine (OXL) --- p.44 / Chapter 3.1 --- Introduction --- p.44 / Chapter 3.2 --- The Immunomodulatory Activity of Oxalysine --- p.46 / Results --- p.46 / Chapter 3.2.1 --- Effect of Oxalysine on the Proliferation of Mouse Splenocytes --- p.46 / Chapter 3.2.2 --- Effect of In Vitro Oxalysine Exposure on the Response of Murine Splenocytes to Mitogens --- p.46 / Chapter 3.2.3 --- Effect of In Vivo Oxalysine Treatment on the Response of Murine Splenocytes to Mitogens --- p.49 / Chapter 3.2.4 --- Effect of Oxalysine on Delayed Type Hypersensitivity (DTH) Response --- p.51 / Chapter 3.2.5 --- Effect of Oxalysine on the In Vitro Phagocytic Activity of Mouse Peritoneal Macrophages --- p.51 / Chapter 3.2.6 --- Effect of Oxalysine on Macrophage- Mediated Cytostatic Activity --- p.53 / Chapter 3.2.7 --- Effect of Oxalysine on the Humoral Response to SRBC --- p.55 / Discussion --- p.59 / Chapter 3.3 --- Mechanistic Studies on Inhibition of Mitogen´ؤ Induced Lymphocyte Transformation by Oxalysine --- p.62 / Results --- p.62 / Chapter 3.3.1 --- Lack of Direct Cytotoxic Effect of Oxalysine on Mouse Splenocytes In Vitro --- p.62 / Chapter 3.3.2 --- Effect of Oxalysine on the Kinetics of Con A-Induced Lymphoproliferative Response --- p.62 / Chapter 3.3.3 --- Time Course Studies on the Effect of Oxalysine on Mitogen-Induced Lymphocyte Transformation --- p.64 / Chapter 3.3.3.1 --- Preincubation of Oxalysine --- p.64 / Chapter 3.3.3.2 --- Delayed Addition of Oxalysine --- p.67 / Chapter 3.3.4 --- Effect of Exogenous IL-2 on the Oxalysine-Mediated Suppression of Lymphocyte Blastogenesis --- p.69 / Chapter 3.3.5 --- Effect of Oxalysine on the Activity of IL-2 Containing Medium to Maintain the Proliferation of the IL´ؤ2 Dependent CTLL-2 Cells --- p.73 / Chapter 3.3.6 --- Production of IL-2 from Splenocytes of Oxalysine´ؤTreated Mice --- p.75 / Chapter 3.3.7 --- The In Vitro Effect of Oxalysine on the Production of IL-2 from Con A-Activated Mouse Splenocytes --- p.75 / Discussion --- p.79 / Chapter 3.4 --- The Antitumor Activity of Oxalysine --- p.83 / Results --- p.83 / Chapter 3.4.1 --- Cytotoxicity of Oxalysine on Various Tumor Cell Lines --- p.83 / Chapter 3.4.2 --- Cytostatic Effect of Oxalysine on Various Tumor Cell Lines --- p.85 / Chapter 3.4.3 --- Effect of Oxalysine on the Survival of Tumor-Bearing Mice --- p.93 / Chapter 3.4.4 --- Effect of Oxalysine on the Growth of Transplantable Tumor Cells In Vivo --- p.95 / Discussion --- p.100 / Chapter 3.5 --- General Discussion --- p.102 / Chapter Chapter 4 --- The Immunomodulatory and Cytotoxic Properties of Luffaculin (LFC) --- p.104 / Chapter 4.1 --- Introduction --- p.104 / Chapter 4.2 --- The Immunomodulatory Activity of Luffaculin --- p.106 / Results --- p.106 / Chapter 4.2.1 --- Lack of Direct Cytotoxic Effect of LFC on Mouse Splenocytes In Vitro --- p.106 / Chapter 4.2.2 --- Effect of Luffaculin on the Proliferation of Mouse Splenocytes --- p.108 / Chapter 4.2.3 --- Inhibition of the Mitogen-Induced Lymphocyte Transformation by Luffaculin --- p.108 / Chapter 4.2.4 --- Effect of Luffaculin on Delayed Type Hypersensitivity (DTH) Response --- p.114 / Chapter 4.2.5 --- Primary Humoral Immune Response to SRBC in Luffaculin-Treated Mice --- p.114 / Chapter 4.2.6 --- Effect of Luffaculin on Phagocytosis of Macrophages In Vitro --- p.117 / Chapter 4.2.7 --- Effect of Luffaculin on Macrophage- Mediated Cytostatic Activity --- p.117 / Chapter 4.2.8 --- Production of Interleukin´ؤ2 from Splenocytes of Luffaculin-Treated Mice --- p.119 / Discussion --- p.122 / Chapter 4.3 --- The Cytotoxic and Cytostatic Effects of Luffaculin on Various Tumor Cell Lines --- p.125 / Results --- p.125 / Chapter 4.3.1 --- Cytotoxicity of Luffaculin on Various Tumor Cell Lines --- p.125 / Chapter 4.3.2 --- Cytostatic Effect of Luffaculin on Various Tumor Cell Lines --- p.127 / Discussion --- p.138 / Chapter 4.4 --- General Discussion --- p.140 / References --- p.143
9

Use of antibiotics in Greek mariculture

Christofilogiannis, Panagiotis January 2002 (has links)
Bacteriological survey of the fish pathogens in Greek mariculture between 1994- 1997 was followed by analysis of prevalence in sea bass, sea bream, sharpsnout bream and common Dentex and discussion of the impact of various fish pathogens. In addition antibiotic resistance profiles and frequencies were studied using quantitative antibiogram and MIC analysis for the two most commonly used antibiotics Oxolinic acid and Oxytetracycline and clinically relevant MIC breakpoints were extrapolated for different fish species and main fish pathogens. The kinetics of the above antimicrobials were analysed in eight experiments where two fish species namely sea bass and sea bream as well as two water temperatures were employed. Muscle, liver, serum, skin samples were analysed by two HPLC methods and two bioassay methods were developed. The relative importance and significance of these findings was evaluated in the general context of pharmacokinetic studies in fish. Kinetic data were compared to clinical data and practical implications were evaluated. Issues like antibiotic resistance and its implications, the implications of residues and resistance in human health and the environment were analysed in order to put this study in context. Conclusions tackled important aspects of antimicrobial chemotherapy and future work was suggested.
10

Antibiotic-induced bacterial toxin release - inhibition by protein synthesis inhibitors /

Hjerdt-Goscinski, Gunilla, January 2004 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2004. / Härtill 5 uppsatser.

Page generated in 0.0693 seconds