Spelling suggestions: "subject:"hand edge position"" "subject:"land edge position""
1 |
Absolute Energy Level Positions in CdSe Nanostructures from Potential-Modulated Absorption Spectroscopy (EMAS)Spittel, D., Poppe, J., Meerbach, C., Ziegler, C., Hickey, Stephen G., Eychmüller, A. 27 November 2017 (has links)
Yes / Semiconductor nanostructures like CdSe quantum dots and colloidal nanoplatelets
exhibit remarkable optical properties, making them interesting for applications in optoelectronics
and photocatalysis. For both areas of application a detailed understanding of
the electronic structure is essential to achieve highly efficient devices. The electronic
structure can be probed using the fact that optical properties of semiconductor nanoparticles
are found to be extremely sensitive to the presence of excess charges that can for
instance be generated by means of an electrochemical charge transfer via an electrode.
Here we present the use of potential modulated absorption spectroscopy (EMAS) as
a versatile spectroelectrochemical method to obtain absolute band edge positions of
CdSe nanostructures versus a well-defined reference electrode under ambient conditions.
In this the spectral properties of the nanoparticles are monitored dependent on an
applied electrochemical potential. We developed a bleaching model that yields the lowest
electronic state in the conduction band of the nanostructures. A change in the band
edge positions caused by quantum confinement is shown both for CdSe quantum dots as
well as for colloidal nanoplatelets. In the case of CdSe quantum dots these findings are
in good agreement with tight binding calculations. The method presented is not limited
to CdSe nanostructures but can be used as a universal tool. Hence, this technique allows
the determination of absolute band edge positions of a large variety of materials used in
various applications.
|
2 |
Development of Graphitic Carbon Nitride based Semiconductor Photocatalysts for Organic Pollutant DegradationWang, Jing January 2015 (has links)
As a potential solution to the global energy and environmental pollution, design and synthesis of artificial photocatalysts with high activities have attracted increasing scientific interests worldwide. In recent years, the graphitic carbon nitride (g-C3N4) has shown new possible applications in the photocatalytic field due to its unique properties. However, the photocatalytic efficiency of the pristine g-C3N4 is greatly limited by the high recombination rate of the photo-induced electron-hole pairs. In this thesis, the aim is to design and fabricate efficient g-C3N4 based photocatalysts with enhanced photocatalytic activities under a visible light irradiation. In order to achieve this goal, two strategies have been employed in the present thesis. First, the as-obtained g-C3N4 was used as the host material to construct staggered-aligned composite photocatalysts by selecting semiconductors with suitable band positions. By this method, three kinds of g-C3N4-based composite photocatalysts such as g-C3N4/ZnS nanocage, g-C3N4/m-Ag2Mo2O7 and g-C3N4/MIL-88A were successfully fabricated. Second, the microstructure of the g-C3N4 was modified by the H2O2-treatment at an elevated temperature and ambient pressure. In this study, the g-C3N4 was prepared by a simple pyrolysis of urea. As for all the as-synthesized phtocatalysts, the structures, morphologies and the optical properties were carefully characterized by the following techniques: XRD, SEM, TEM, FT-IR and DRS. Also, the band edge positions of m-Ag2Mo2O7 and MIL-88A were studied by the Mott-Schottky methods. Thereafter, the photocatalytic activities were evaluated by using a solution of rhodamine B (RhB) as a target pollutant for the photodegradation experiments performed under a visible light irradiation. The results showed that all the aforementioned g-C3N4-based photocatalysts exhibited enhanced photocatalytic activities in comparison with the pristine g-C3N4. For the case of the g-C3N4-based composite photocatalysts, the enhancement factor over the pristine g-C3N4 can achieve values ranging from 2.6 to 3.4. As for the H2O2-treated g-C3N4, the degradation rate constant can be 4.6 times higher than that of the pristine g-C3N4. To understand the key factors in new materials design, we also devote a lot of efforts to elucidate the basic mechanisms during the photocatalytic degradation of organic pollutant. Based on the results of the active species trapping (AST) experiments, the main active species in each photocatalytic system were determined. In the g-C3N4/m-Ag2Mo2O7 and the g-C3N4/MIL-88A system, three kinds of active species of ·O2-, h+ and ·OH were found to be involved in the photocatalytic reaction. Among them, the ·O2- and h+ were the main active species. In the g-C3N4/ZnS and H2O2-treated g-C3N4 photocatalytic systems, the main active species was determined as the ·O2-. The reaction pathways of these active species were also demonstrated by comparing the band edge positions with the potentials of the redox couple. In addition, the relationship between the active species and the photocatalytic behaviors of N-de-ethylation and conjugated structure cleavage were studied. Finally, possible mechanisms to explain the enhanced photocatalytic activities were proposed for each photocatalytic system. The results in this thesis clearly confirm that the photocatalytic activity of the g-C3N4 based photocatalyst can efficiently be enhanced by constructions of staggered-aligned composites and by modification of the microstructure of the g-C3N4. The enhanced photocatalytic performance can mainly be ascribed to the efficient separation of the photo-induced electron-hole pairs and the increase of the active sites for the photocatalytic reaction. / <p>QC 20150909</p>
|
3 |
Absolute Energy Level Positions in CdSe Nanostructures from Potential-Modulated Absorption Spectroscopy (EMAS)Spittel, Daniel, Poppe, Jan, Meerbach, Christian, Ziegler, Christoph, Hickey, Stephen G., Eychmüller, Alexander 28 February 2019 (has links)
Semiconductor nanostructures such as CdSe quantum dots and colloidal nanoplatelets exhibit remarkable optical properties, making them interesting for applications in optoelectronics and photocatalysis. For both areas of application a detailed understanding of the electronic structure is essential to achieve highly efficient devices. The electronic structure can be probed using the fact that optical properties of semiconductor nanoparticles are found to be extremely sensitive to the presence of excess charges that can for instance be generated by means of an electrochemical charge transfer via an electrode. Here we present the use of EMAS as a versatile spectroelectrochemical method to obtain absolute band edge positions of CdSe nanostructures versus a well-defined reference electrode under ambient conditions. In this, the spectral properties of the nanoparticles are monitored with respect to an applied electrochemical potential. We developed a bleaching model that yields the lowest electronic state in the conduction band of the nanostructures. A change in the band edge positions caused by quantum confinement is shown both for CdSe quantum dots and for colloidal nanoplatelets. In the case of CdSe quantum dots these findings are in good agreement with tight binding calculations. The method presented is not limited to CdSe nanostructures but can be used as a universal tool. Hence, this technique allows the determination of absolute band edge positions of a large variety of materials used in various applications
|
Page generated in 0.0954 seconds