Spelling suggestions: "subject:"barley"" "subject:"harley""
241 |
A study of absorption and excretion of potassium and calcium by the roots of barley in different solution media and changes in hydrogen-ion concentration.Wenzel, George 01 January 1941 (has links) (PDF)
No description available.
|
242 |
The effect of calcium salts on K absorption by excised barley roots.Tadano, Toshiaki 01 January 1965 (has links) (PDF)
No description available.
|
243 |
Nucleoside phosphorylation in plants :Prasher, Douglas C. January 1979 (has links)
No description available.
|
244 |
The active site analysis and characterization of a phosphoryl-enzyme from nucleoside phosphotransferase in barley seedlings /Carr, Michael C. January 1982 (has links)
No description available.
|
245 |
Regulation of Nitrate Assimilation in Maize and Barley / Regulation of Nitrate AssimilationZoumadakis, Michael 09 1900 (has links)
To determine the limiting factors in nitrate assimilation in maize and barley, the effects of nitrate on 1) steady state levels of nitrate reductase activity (NRA) and nitrate reductase protein (NRP); 2) the uptake, translocation and accumulation of nitrate in the shoots of the seedling plant were examined. Seedlings were grown on Kimpack paper containing l, 5 or 20mM KN0₃ for 7 days at 20°c (barley) or 28°C (maize). At lmM KN0₃ the rate of 3 nitrate uptake and the levels of NRA and NRP were higher in maize than in barley. In contrast., at 5 and 20mlv1 KNo₃, the rate of uptake, the accumulation of nitrate and the NRA were higher in barley than in maize. The results suggest that the synthesis of NR is induced by lower levels of nitrate in maize relative to barley. In addition, nitrate-nitrogen appears to be more efficiently converted to proteins, other than NR, in maize than in barley. At very low levels of nitrate an inactive NR protein was present. in maize. To characterize the inactive NR, maize plants were grown under conditions where high levels of NRA were detected (vermiculite:sand, l:lw/w, containing 10mM KN0₃) and under conditions where NR was present primarily in the inactive form (Kimpack paper:washed sand). Nitrate reductase was purified from primary leaves using Blue Sepharose affinity chromatography. The column was washed with NADH and KN0₃ in each case. The peaks of NR were 3 detected using Dot-immunoblotting, with an antibody prepared against maize leaf NR and by assessing the NRA. Active and inactive NR forms were found both at the NADH-and the KN0₃-wash. In the NADH-wash, the inactive NR as compared to the active form, has very low NADH (complete), FMNH₂, MV and BPB (reductase) activities. Significant levels of cyt-c and FeCN (dehydrogenase) partial activities were detected. Similarly, the inactive NR in the KN0-wash, had 3no NADH (complete), FMNH2 , MV and BPB (reductase) activities. Very low levels of cyt-c and FeCN (dehydrogenase) NR partial activities were detected, compared to the respective activities of the active enzyme in the KNO₃ wash. / Thesis / Master of Science (MSc)
|
246 |
Potential of Hulless Winter Barley as an Improved Feed CropParis, Robert L. 26 April 2000 (has links)
This research was conducted to determine the potential of hulless winter barley (Hordeum vulgare L.) as an improved feed crop in the mid-Atlantic region. Winter barley is an excellent crop in rotation with soybean (Glycine max L.); however, production of winter barley during the past few years has decreased mainly due to low market prices, even though the mid-Atlantic region is a feed grain deficient area. Therefore, value added traits need to be developed in order for barley production to continue in the region.
In the first part of this study, the objectives were to: (i) evaluate the agronomic performance and potential of six experimental hulless winter barley lines compared with two commercial hulled cultivars; (ii) determine and compare fiber, b-glucan, protein, and fat concentrations, and true metabolizable energy, corrected for nitrogen (TMEn) among these genotypes; and (iii) evaluate the genetic potential of winter hulless barley accessions from the world collection for use as parents in hulless breeding programs. Six hulless lines all derived from the cross VA75-42-45/SC793556//CI2457 were acquired from Clemson University in South Carolina. The six lines were evaluated for yield, test weight, heading date, plant height, and lodging. These hulless lines along with two hulled cultivars were planted in replicated yield plots in four states with a total of eight locations, and were managed according to standard recommended practices. Grain from each of the hulless lines and hulled checks, along with that of Trical 498 triticale (X Triticosecale) and Jackson wheat (Triticum aestivum L.) were analyzed for fiber, b-glucan, fat, protein, and ash concentration, and TMEn value. Eight hundred and seven winter or facultative habit hulless barley lines were obtained from the USDA-ARS National Small Grains Collection in Aberdeen, ID. These lines were screened for reaction type to races 8 and 30 of barley leaf rust (Puccinia hordei) and to a composite population of powdery mildew (Blumeria graminis f. sp. hordei). These accessions also were planted in observation rows to evaluate heading date, plant height, lodging, and seed threshability.
The hulless lines yielded 23% less, but had 13% higher test weights than the hulled check cultivars. There was no difference between hulled and hulless barley in heading date and plant height. Hulless lines had a higher protein and lower fiber concentration than hulled barley. They also had higher b-glucan and fat concentrations than triticale or wheat. TMEn was similar between hulled and hulless barley, triticale, and wheat. Approximately 100 hulless barley lines from the world collection were selected for potential use as parents among 800 accessions tested, based on evaluations of lodging, plant height, threshability, and seed color.
In the second part of the study the objectives were to determine the effects of (i) hulled and hulless barley, and (ii) b-glucanase on the performance of broilers fed different diets from 21 to 42 days of age. Diets comprised of 30% hulless or hulled barley, and a standard corn (Zea mays)/soybean meal diet with and without b-glucanase enzyme were evaluated to determine the effects of barley on gut viscosity, carcass weight, gain, percent shell, and feed efficiency in 21 to 42 day old broilers. In the first year, diets comprised of hulless lines SC890573 and SC860972, and the hulled cultivar Callao were compared to a standard check diet. In the second year SC860972 was replaced with SC880248 due to the inability to secure a sufficient amount of seed. Each year one hulled and two hulless barley diets were compared to a standard diet. Each diet was fed with and without enzyme, for a total of eight diets. Broilers 21 days of age were fed the diets until day 42 when they were processed. There was a significant decrease (P<0.05) in gut viscosity of birds fed diets with enzyme compared to birds fed diets without enzyme; however, gut viscosity did not affect weight gain or percent shell. Barley substituted at the 30% level did not have a significant effect on broiler performance, nor did the addition of enzyme. Absence of enzyme effect was attributed to bird age, since older birds are able to hydrolyze b-glucan more effectively than juveniles.
The potential of hulless barley as an improved feed source for the poultry and swine industry is great for the mid-Atlantic region. Increases in grain yield are currently being realized through focused breeding efforts, and hulless lines exhibit positive nutritional components that combine favorable attributes of both wheat and hulled barley. Barley substituted at the 30% level in the diets of broilers did not cause any detrimental effects. Addition of hulless barley may potentially lead to a reduction in cost per pound of gain of broilers, and provide an alternative crop for mid-Atlantic region grain producers and feeders. / Ph. D.
|
247 |
Studies on the analysis of genetic markers and quantitative trait loci in plant breeding populationsTinker, Nicholas Andrew January 1994 (has links)
No description available.
|
248 |
Physiological traits for screening drought resistance in barleyTrần Văn Điền, 1961- January 1997 (has links) (PDF)
Bibliography: leaves 187-203. Evaluates critically a number of physiological traits which may be related to drought resistance in cereals and examines the feasibility of using these screening techniques in selecting more drought resistant genotypes of barley for South Australia.
|
249 |
The development of molecular markers for barley Yd2, the barley yellow dwarf virus resistance genePaltridge, Nicholas G. (Nicholas Geoffrey) January 1998 (has links) (PDF)
Includes bibliographical references (l5 leaves) The aim of the work presented in this thesis was to develop molecular genetic markers for YD2 (the gene in barley which provides protection against barley yellow dwarf luteovirus) which could be used for the marker assisted selection of the gene in breeding programs and enable the gene to be cloned via a map-based approach.
|
250 |
Mapping and introgression of disease resistance genes in barley (Hordeum vulgare L.)Toojinda, Theeryut 09 December 1998 (has links)
Molecular tools, coupled with unique germplasm stocks and rigorous phenotyping, are
useful for developing a better understanding of qualitative and quantitative disease resistance
genes in plants. The identification of molecular markers linked to all types of resistance
genes provides opportunities for implementing a range of resistance breeding strategies,
ranging from gene pyramiding to gene deployment. This thesis consists of two chapters. The
first describes a disease resistance gene mapping effort and the second describes a disease
resistance gene introgression effort. The number, location, and effects of genes determining
resistance to stripe rust, leaf rust and Barley Yellow Dwarf Virus were determined using a
population of doubled haploid (DH) lines from the cross of Shyri x Galena. Resistance to leaf
rust was qualitatively inherited, and the locus was mapped to the long arm of chromosome 1.
Resistance to stripe rust and BYDV was quantitatively inherited. Multiple QTLs were
detected for each type of resistance. The principal stripe rust resistance QTL was on the
short arm of chromosome 5 and the principal BYDV resistance QTL was on the long arm of
chromosome 1, linked in repulsion phase with the leaf rust resistance gene. Additional QTLs
and QTL x QTL interactions were detected. The majority of the qualitative and quantitative
resistance loci detected in the Shyri x Galena population coincided with Resistance Gene
Analog Polymorphisms (RGAPs) mapped in the same population. These RGAPs were based
on degenerate primers derived from cloned resistance gene sequence motifs. These
associations should be useful for efficient resistance gene mapping and provide an approach
for ultimately isolating and describing quantitative and qualitative resistance genes. The
second chapter describes a molecular marker assisted selection (MMAS) effort to introgress
stripe rust resistance QTLs on chromosomes 4 and 7 into susceptible germplasm. DH lines
were derived form a MMAS backcross-one (BC-1) population, extensively phenotyped for
stripe rust resistance, and genotyped for the introgressed QTLs and background genome.
The resistance QTLs that were introgressed were significant determinants of resistance in the
new genetic background. Additional resistance QTLs were also detected. Together, these
chapters describe an integrated approach to disease resistance gene characterization and
utilization. / Graduation date: 1999
|
Page generated in 0.0805 seconds