Spelling suggestions: "subject:"batteries."" "subject:"catteries.""
281 |
Development of electric vehicle battery capacity estimation using neuro-fuzzy systemsWu, Kwok-Chiu., 胡國釗. January 2003 (has links)
published_or_final_version / abstract / toc / Electrical and Electronic Engineering / Master / Master of Philosophy
|
282 |
System analysis perspectives : lead-acid battery recycling in British Columbia, CanadaAlvares da Silva, Ana Carolina 05 1900 (has links)
This dissertation aims to use a system thinking approach to describe and evaluate the Lead-Acid Battery Recycling Program in British Columbia, compare it with other provincial regulated recycling programs and identify strategies on how it can be improved. The research is presented in the manuscript based format, comprised of four interrelated chapters. Following the introduction, chapter 2 describes a multiple regression analysis to assess how various factors identified by informed stakeholders have contributed to recycling rate in 14 transportation zones from 1995 to 2005. This study demonstrates that the existing recycling scheme ineffectively promotes recycling as it has achieved an average of 75% over the past 13 years with large fluctuations among transportation zones. The regression also shows that recycling rate of transportation zones are not highly influenced by LME lead prices and Transportation Incentive (which can be explained by the strong market power of the recycling plants responsible for setting up the price of scrap lead to which the collectors respond).
Chapter 3 identifies key components that influence the performance of varied recycling systems based on a comparative analysis of provincial recycling systems informed by expert interviews. In chapter 4, comprehensive evaluation criteria for the lead-acid battery recycling program is developed based on objectives and performance measures elicited through an extensive stakeholder consultation process with various individuals and organizations. Fundamental objectives identified by stakeholders include: reduce environmental impacts, reduce occupational health impacts, reduce net costs, increase equity in resource consumption patterns and increase systematic learning. In chapter 5, we use multiple criteria decision analysis (MCDA) to design and assess effective recycling strategies to meet societal objectives previously identified in the chapter 4. Recycling strategies were compiled using the results of chapter 3. The results reveals that the optimal policy for the lead-acid battery recycling system combines a return to retailer program financed through an advanced disposal fee included in the battery price in combination with increased plant or recycling capacity domestically. This research also provides relevant contributions to the refining and application of value-focused thinking and decision analysis methodologies.
|
283 |
INTEGRATING WIND GENERATED ELECTRICITY WITH SPACE HEATING AND STORAGE BATTERIESMuralidhar, Anirudh 20 December 2010 (has links)
The world faces two major energy-related challenges: reducing greenhouse-gas emissions and improving energy security. Wind-electricity, a clean and environmentally sustainable energy source, appears promising. However, its intermittency is problematic when used as a supply for on-demand electricity.
Wind-electricity can be used for space heating when combined with thermal-storage systems; although its intermittency can result in periods of excess electricity. To reduce the excess, this thesis proposes using wind-electricity for thermal-storage and electric-vehicles. Four charging procedures are designed and developed. Data from an eastern Canadian wind-farm is used to demonstrate the procedures.
The results are compared and discussed in terms of the supply of wind-electricity and its ability to meet the energy requirements of these services. Depending on the procedure, wind-electricity displaced between 20 and 26 GWh of energy previously required for space-heating and transportation, demonstrating that wind-electricity, with intermittently-chargeable loads using storage, is a solution to the intermittency problem.
|
284 |
AN IN-SITU INVESTIGATION OF SOLID ELECTROLYTE INTERPHASE FORMATION ON ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES USING SPECTROSCOPIC ELLIPSOMETRY08 August 2011 (has links)
A novel method to detect and quantify the growth of the solid electrolyte interphase (SEI) on battery electrode materials using in-situ spectroscopic ellipsometry (SE) is presented. The effects of additives in 1 M LiPF6/EC:DEC (1:2) electrolyte on the SEI were studied. Thin film electrodes of a-Si, Ni, and TiN were prepared by magnetron sputtering for use with a custom-designed tubular in-situ electrochemical cell. Li/a-Si and Li/Ni in-situ cells in 0.1 M LiPF6/EC:DEC (1:2) were studied by galvanostatic chronopotentiometry. Large changes in the ellipsometric parameters, ? and ?, were observed for both materials. These changes were closely related to the state of charge of the in-situ cell. The formation of an a-LixSi alloy, the formation of an SEI layer, or both contributed to these large changes for a Li/a-Si in-situ cell. For a Li/Ni in-situ cell, a thin transparent surface layer was observed. The surface layer, presumably made from SEI species and species from the displacement reaction between NiO and Li, increased to roughly 17 nm during the first discharge. During the first charge, the surface layer thickness decreased to roughly 5.5 nm and could not be removed, even at high potentials. The effect of vinylene carbonate (VC) and fluoroethylene carbonate (FEC) additives on SEI formation were studied using a Li/TiN in-situ cell in 1 M LiPF6/EC:DEC (1:2) by potentiostatic chronoamperometry. SEI thicknesses for cells containing no additives, VC, and FEC were roughly 18 nm, 25 nm and 30 nm, respectively, after a 10 h hold at 0.1 V. SE is a useful technique for measuring thin film growth in-situ on electrode materials for Li-ion batteries.
|
285 |
STUDY OF ELECTROLYTE ADDITIVES IN LI-ION BATTERIES USING ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY ON SYMMETRIC CELLSPetibon, Remi 22 August 2013 (has links)
Electrolyte additives are generally used in commercial Li-ion cells to improve capacity retention and calendar life. Although it is apparent that electrolyte additives play an important role, the details of how they work are poorly understood. In order to be able to distinguish the effect of an additive on the positive or negative electrodes, an experimental method has been developed based on electrochemical impedance spectroscopy of symmetric cells constructed from electrodes of disassembled full cells similar to the method described by previous workers. This technique proved to be useful and showed that the effects of additives on both electrodes depend strongly on their concentration. It also showed that in some cases, when two additives are introduced in the same cell, both additives contribute to the formation of the surface layer of both electrodes. In other cases, each additive controls the formation of the surface layer of only one electrode.
|
286 |
Consolidated Nanomaterials Synthesized using Nickel micro-wires and Carbon Nanotubes.Davids, Wafeeq. January 2007 (has links)
<p>The current work focuses on the synthesis and characterization of nano-devices with potential application in alkaline electrolysis and secondary polymer lithium ion batteries.</p>
|
287 |
Insights into the morphological changes undergone by the anode in the lithium sulphur battery systemYalamanchili, Anurag January 2014 (has links)
In this thesis, the morphological changes of the anode surface in lithium sulphur cell, during early cycling, were simulated using symmetrical lithium electrode cells with dissolved polysulphides (PS) in the electrolyte. Electron microscopy (SEM) was used as the principal investigation technique to study and record the morphological changes. The resulting images from the SEM were analysed and discussed. The initial surface structure of the lithium anode largely influenced the ensuing morphological changes taking place through lithium dissolution (pits) and lithium deposition (dendrites) during discharge and charge respectively. The rate of lithium dissolution and deposition was found to be linearly proportional to the current density applied to the cell and the effect of cycling on the anode was proportional to the total charge of the cell in general in agreement with the expected reaction. The effect of self-discharge on the anode was also studied using photoelectron spectroscopy (XPS) in tandem with SEM. The results indicated that self-discharge, occurring in the form of corrosion of the anode SEI by PS reduction, was influenced by the altered morphology of the cell after cycling. The findings presented in this project can be understood as a preliminary description for the morphological changes in the anode and their influence in the performance of lithium sulphur battery, which can be further investigated by more advanced methods. / <p>Joint collaboration project between Scania CV AB and Uppsala University.</p>
|
288 |
A Study on Nano-Si/Polyaniline/Reduced Graphene Oxide Composite Anode for Lithium-Ion BatteriesLi, Kai January 2013 (has links)
Because of its high theoretical specific capacity (4200mAh/g) and natural abundance (2nd most abundant element on earth), silicon is considered a promising anode candidate for high energy density lithium-ion batteries. However, the dramatic volume changes (up to 400%) that occur during lithiation/delithiation and the relative low electrical conductivity of silicon prevent the implementation of this material. In this work, a nano-silicon/polyaniline/reduced graphene oxide composite was synthesized via a two-step process: in-situ polymerization of polyaniline (PANi) in the presence of nano-silicon followed by combination of the prepared n-Si/PANi binary composite with reduced graphene oxide (RGO), to form a n-Si/PANi/RGO composite. Electron microscopy reveals the unique nano-architecture of the n-Si/PANi/RGO composite: silicon nanoparticles are well dispersed within a PANi matrix, which in turn is anchored to the surface of RGO sheets. The n-Si/PANi/RGO ternary composite delivered an initial capacity of 3259 mAh/g and 83.5% Coulombic efficiency. The new composite displayed better rate performance and capacity recovery than either nano-Si or n-Si/PANi. Structural and morphological studies combined with AC impedance analysis suggest that the n-Si/PANi/RGO composite has higher electrical conductivity than the other two component materials, yielding better performance at high current densities or C rates. The good rate performance, high initial specific capacity and stable Coulombic efficiency of n-Si/PANi/RGO make it a promising anode material for high energy density lithium-ion batteries.
|
289 |
A Study on Nano-Si/Polyaniline/Reduced Graphene Oxide Composite Anode for Lithium-Ion BatteriesLi, Kai January 2013 (has links)
Because of its high theoretical specific capacity (4200mAh/g) and natural abundance (2nd most abundant element on earth), silicon is considered a promising anode candidate for high energy density lithium-ion batteries. However, the dramatic volume changes (up to 400%) that occur during lithiation/delithiation and the relative low electrical conductivity of silicon prevent the implementation of this material. In this work, a nano-silicon/polyaniline/reduced graphene oxide composite was synthesized via a two-step process: in-situ polymerization of polyaniline (PANi) in the presence of nano-silicon followed by combination of the prepared n-Si/PANi binary composite with reduced graphene oxide (RGO), to form a n-Si/PANi/RGO composite. Electron microscopy reveals the unique nano-architecture of the n-Si/PANi/RGO composite: silicon nanoparticles are well dispersed within a PANi matrix, which in turn is anchored to the surface of RGO sheets. The n-Si/PANi/RGO ternary composite delivered an initial capacity of 3259 mAh/g and 83.5% Coulombic efficiency. The new composite displayed better rate performance and capacity recovery than either nano-Si or n-Si/PANi. Structural and morphological studies combined with AC impedance analysis suggest that the n-Si/PANi/RGO composite has higher electrical conductivity than the other two component materials, yielding better performance at high current densities or C rates. The good rate performance, high initial specific capacity and stable Coulombic efficiency of n-Si/PANi/RGO make it a promising anode material for high energy density lithium-ion batteries.
|
290 |
System analysis perspectives : lead-acid battery recycling in British Columbia, CanadaAlvares da Silva, Ana Carolina 05 1900 (has links)
This dissertation aims to use a system thinking approach to describe and evaluate the Lead-Acid Battery Recycling Program in British Columbia, compare it with other provincial regulated recycling programs and identify strategies on how it can be improved. The research is presented in the manuscript based format, comprised of four interrelated chapters. Following the introduction, chapter 2 describes a multiple regression analysis to assess how various factors identified by informed stakeholders have contributed to recycling rate in 14 transportation zones from 1995 to 2005. This study demonstrates that the existing recycling scheme ineffectively promotes recycling as it has achieved an average of 75% over the past 13 years with large fluctuations among transportation zones. The regression also shows that recycling rate of transportation zones are not highly influenced by LME lead prices and Transportation Incentive (which can be explained by the strong market power of the recycling plants responsible for setting up the price of scrap lead to which the collectors respond).
Chapter 3 identifies key components that influence the performance of varied recycling systems based on a comparative analysis of provincial recycling systems informed by expert interviews. In chapter 4, comprehensive evaluation criteria for the lead-acid battery recycling program is developed based on objectives and performance measures elicited through an extensive stakeholder consultation process with various individuals and organizations. Fundamental objectives identified by stakeholders include: reduce environmental impacts, reduce occupational health impacts, reduce net costs, increase equity in resource consumption patterns and increase systematic learning. In chapter 5, we use multiple criteria decision analysis (MCDA) to design and assess effective recycling strategies to meet societal objectives previously identified in the chapter 4. Recycling strategies were compiled using the results of chapter 3. The results reveals that the optimal policy for the lead-acid battery recycling system combines a return to retailer program financed through an advanced disposal fee included in the battery price in combination with increased plant or recycling capacity domestically. This research also provides relevant contributions to the refining and application of value-focused thinking and decision analysis methodologies.
|
Page generated in 0.0561 seconds