Spelling suggestions: "subject:"bernoulli polynomials"" "subject:"bernoullis polynomials""
1 |
On Witten multiple zeta-functions associated with semisimple Lie algebras IITsumura, Hirofumi, Matsumoto, Kohji, Komori, Yasushi 05 1900 (has links)
No description available.
|
2 |
A Characterization of Homeomorphic Bernoulli Trial Measures.Yingst, Andrew Q. 08 1900 (has links)
We give conditions which, given two Bernoulli trial measures, determine whether there exists a homeomorphism of Cantor space which sends one measure to the other, answering a question of Oxtoby. We then provide examples, relating these results to the notions of good and refinable measures on Cantor space.
|
3 |
Hybrid functions in Fractional CalculusMashayekhi, Somayeh 14 August 2015 (has links)
In this dissertation, a new numerical method for solving the fractional dynamical systems, is presented. We first introduce Riemann-Liouville fractional integral operator for hybrid functions. Then we will show the spectral accuracy of the present method for solving fractional-order differential equations, and we will extend the present method for solving nonlinear fractional integro-differential equations, fractional Bagley-Torvik equation, distributed order fractional differential equations, two-dimensional fractional partial differential equations, and fractional optimal control problems. In all cases, we will show the rate of convergence is more than some existing numerical methods which were used to solve these kind of problems in the literature. Illustrative examples are included to demonstrate the validity and applicability of the technique.
|
4 |
CÁLCULO FINITO: DEMONSTRAÇÕES E APLICAÇÕESKondo, Pedro Kiochi 30 September 2014 (has links)
Made available in DSpace on 2017-07-21T20:56:33Z (GMT). No. of bitstreams: 1
Pedro Kiochi Kondo.pdf: 1227541 bytes, checksum: daffb8a8bc299356bce288603753944c (MD5)
Previous issue date: 2014-09-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work some topics of the Discrete or Finite Calculus are developed. In particular, we study difference operators, factorial powers, Stirling numbers of the first and second type, the Newton’s formula of differences, the fundamental theorem of the Finite Calculus, the summation process, and the Bernoulli numbers and Bernoulli polynomials. Then we show the effectiveness of the theory for the calculation of closed formulas for the value of many finite sums. We also study the classical problem of obtaining the polynomials which express the value of the sums of powers of natural numbers. / Neste trabalho desenvolvemos alguns tópicos do Cálculo Discreto ou Finito. Em particular, estudamos operadores de diferenças, potências fatoriais, números de Stirling do primeiro e do segundo tipo, a fórmula de diferenças de Newton, o teorema fundamental do Cálculo Finito, o processo de somação e os números e polinômios de Bernoulli. Mostramos então a eficácia da teoria no cálculo de fórmulas fechadas para o valor de diversas somas finitas. Também estudamos o problema clássico de obter os polinômios que expressam o valor de somas de potências de números naturais.
|
5 |
Números e polinômios de BernoulliMirkoski, Maikon Luiz 19 October 2018 (has links)
Submitted by Angela Maria de Oliveira (amolivei@uepg.br) on 2018-11-29T18:07:06Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Maikon Luiz.pdf: 959643 bytes, checksum: aaf472f5b8a9a29532793d01234788a9 (MD5) / Made available in DSpace on 2018-11-29T18:07:06Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Maikon Luiz.pdf: 959643 bytes, checksum: aaf472f5b8a9a29532793d01234788a9 (MD5)
Previous issue date: 2018-10-19 / Neste trabalho,estudamos os números e os polinomios de Bernoulli,bem como algumas de suas aplicações mais importantes em Teoria dos Números. Com base em uma caracterização ao simples, os polinômios de Bernoulli são introduzidos e, posteriormente, os números de Bernoulli. As séries de Fourier dos polinomios de Bernoulli são utilizadas na demonstração da equação funcional da função teta. Esta equação, por sua vez, é utilizada na demonstração da celebre equação funcional da função zeta, que tem importância central na teoria da distribuição dos números primos. Além das conexões com a funções especiais zeta e teta, discutimos também, em detalhe,conexões entre os números e os polinomios de Bernoulli com a função gama. Essas relações são então exploradas para produzir belas fórmulas para certos valores da função zeta, entre outras aplicações. / In this work we study Bernoulli numbers and Bernoulli polynomials, as well as some of its most important applications in Number Theory. Based on a simple characterization, the Bernoulli polynomials are introduced and, later, the Bernoulli numbers. The Fourier series of the Bernoulli polynomials are used to demonstrate the functional equation of the theta function. This equation, in turn, is used in the proof of the famous functional equation of the zeta function, which is central to the theory of prime number distribution. In addition to the connections with the special functions zeta and theta, we also discuss, in detail, connections between the Bernoulli numbers and Bernoulli polynomials with the gamma function. These relations are then explored to produce beautiful formulas for certain values of the zeta function,among other applications.
|
Page generated in 0.0745 seconds