Spelling suggestions: "subject:"biodegradable"" "subject:"iodegradable""
171 |
Investigations On The Biodegradable Polymeric And Inorganic Substrates For Controlled Drug Delivery And Bone And Cartilage RepairAycan, Gunay 01 February 2008 (has links) (PDF)
Tissue engineering is an interdisciplinary field that seeks to address the needs by applying the principles of chemistry, biology and engineering for the development of viable substitutes that restore and maintain the function of human bone and cartilage tissues. In tissue engineering, scaffolds play an important role as temporary supports for the transplantation of specific cells and tissues. In this study, poly(ester-urethane)urea (PEUU) and poly(caprolactone) (PCL) scaffolds were fabricated. Scaffolds were characterized by SEM. Porosities of scaffolds vary from 67 % to 80 %.
Controlled drug delivery systems release drugs at predetermined rates for extended periods. In this study / firstly poly(lactic-co-glycolicolide/tricalcium phosphate) (PLGA/TCP) and poly(L-lactide)/tricalcium phosphate (PLLA/TCP) composites loaded with Gentamicin or Vancomycin were prepared as controlled drug delivery systems for the local treatment of osteomyelitis. The release behavior of drugs were monitored by UV-VIS spectrometer. It was shown that, Vancomycin loaded samples released higher amounts of drug than the samples loaded with Gentamicin.
Secondly, porous ceramic samples were coated with PLGA and PLLA and they were loaded with dexamethasone. The release behavior of samples were monitored by UV-VIS spectrometer.The cubic ceramics released higher amounts of dexamethasone than cylindrical ceramics. When the mechanical properties of porous ceramic samples were concerned, PLLA coated samples had better mechanical properties.
|
172 |
Xylan-based Biodegradable And Wheat Gluten-based Antimicrobial Film ProductionKaramanlioglu, Mehlika 01 February 2008 (has links) (PDF)
In the first part of the study, birchwood xylan-lignin film formation was studied. After film forming effect of lignin on pure birchwood xylan was demonstrated, the minimum lignin concentration necessary to form films was determined as 1.1% (lignin/xylan). So, it was determined that keeping about
one percent lignin in xylan (w/w) was sufficient for film formation.
Biodegradability of the lignin-birchwood xylan composite films was investigated enzymatically using 0.21 U / ml xylanase in an accelerated test. All the films containing lignin were hydrolyzed by xylanase showing biodegradability of the films.
Colors of the birchwood xylan-lignin composite films containing different lignin concentrations were compared. Deviations of the color from the reference color were similar between the films.
In the second part of the study, photocatalytic antimicrobial film production was investigated on wheat gluten-based films. In order to produce antimicrobial films, wheat gluten films were coated with a semiconductor, titanium dioxide (TiO2), applying different procedures. Coated films were
illuminated and photocatalytical inactivation of Escherichia coli on films were determined by antimicrobial tests. The coating procedure in which titanium dioxide (TiO2) was produced from titanium tetraisopropoxide (TTIP) in aqueous-nitric acid and aqueous-hydrochloric acid solutions gave the best antimicrobial result but the films turned out to be deformed and brittle. Spreading TiO2 sol-gel on semi-dried wheat gluten films resulted in flexible and undeformed films having about 40% antimicrobial activity.
|
173 |
Preparation Of Antimicrobial Films From Agricultural BiomassSeber, Gizem Ayse 01 January 2010 (has links) (PDF)
Mainly used food packaging materials are petro-chemical based polymers which present environmental problems since they are not biodegradable and ecologically sustainable. In this study, biodegradable biofilms are produced from xylan, extracted from cotton stalk which is an agricultural biowaste without nutritional value. Antimicrobial property was given to the biofilms with either titanium dioxide sol-gel coatings or titanium dioxide powder addition into the biofilm forming solutions. The antimicrobial activities of biofilms were tested against Escherichia coli. Among two different sol-gels coated and at different temperatures dried biofilms, BWX and CSX-50 biofilms treated at 120° / C and coated with SiO2/TiO2 showed 88± / 1% and 75± / 2% antimicrobial activities, respectively. Same samples treated at the same conditions but coated with non-SiO2 added TiO2 sol-gel yielded 63± / 3% and 63± / 2% antimicrobial activities, respectively after 2 h black light illumination. So, it was determined that the highest photocatalytic antimicrobial property was achieved with SiO2/TiO2 coated biofilms. Moreover different concentrations of TiO2 powder were integrated into xylan based biofilms and 100% photocatalytic inactivation was gathered at 5% (w/w) TiO2 addition achieved at both biofilms at the end of 90 min black light illumination.
Biodegradability properties of the biofilms were investigated in soil burial test during 180 days and 10% (w/w) TiO2 powder added CSX-50 biofilms were recorded to be 91% biodegradable where non-powder added blank biofilms was found to be 95% biodegradable.
|
174 |
Biodegradable Polymer - Hydroxyapatite Nanocomposites For Bone Plate ApplicationsAydin, Erkin 01 July 2010 (has links) (PDF)
Long bone fractures are fixed with bone plates to restrain movement of bone fragments. Fracture site must experience some pressure for proper healing. Bone plates are mostly made up of metals having 5 - 10 times higher elastic modulus than bones and most of the load is carried by them, leading to stress shielding and a bony tissue with low mineral density and strength. To avoid these problems, biodegradable polymer-based composite plates were designed and tested in this study.
Poly(L-lactide) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biodegradable polymer composite fibers containing hydroxyapatite (HAP) nanoparticles were produced by extrusion and spinning techniques to reinforce the polymeric bone plates. The composite fibers were expected to mimic the natural organization of bone so that HAP nanorods aligned parallel to the loading axis of bone plate. Also, lactic acid was grafted on HAP surfaces and had a positive effect on the mechanical properties of the PLLA composites.
A 50% (w/w) HAP nanoparticle content was found to increase tensile modulus value (4.12 GPa) ca. 2.35 times compared to the pure polymeric fiber with a reduction to one third of the original UTS (to 50.4 MPa). The fibers prepared were introduced to polymeric plates with their long axes parallel. Fiber reinforced bone plates were compression tested longitudinally and up to a 4% increase in the Young&rsquo / s Modulus was observed. Although this increase was not high was not high probably due to the low fiber content in the final plates, this approach was found to be promising for the production of biodegradable polymeric bone plates with mechanical values closer to that of cortical bones.
Biological compatibility of fibers was validated with in vitro testing. The osteoblasts attached and spread on the fibers indicating that bone fractures fixed with these could attract of bone forming osteoblasts into defect area and help speed up healing.
|
175 |
Fabrication of PHBV and PHBV-based composite tissue engineering scaffolds through the emulsion freezing/freeze-drying process and evaluation of the scaffoldsSultana, Naznin. January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2010. / Includes bibliographical references (p. 253-274). Also available in print.
|
176 |
Effect of Solids Retention Time on the Denitrification Potential of Anaerobically Digested Swine WasteKinyua, Maureen Njoki 01 January 2013 (has links)
Three continuously stirred tank reactors (CSTR) were operated in semi continuous mode treating swine waste using anaerobic digestion. The reactors were used to test the effect of solid retention time (SRT) on CH4 yield, total ammonia nitrogen (TAN) concentrations, % volatile solids (VS), chemical oxygen demand (COD) and volatile fatty acids (VFA) removal, readily biodegradable COD concentration and the denitrification potential for the effluent in a biological nutrient removal (BNR) system. During Phase I of the study, the three reactors were operated at the same 28 day SRT for 16 weeks. SRTs were then changed during the 12 week Phase II period. The SRTs studied were 14, 21 and 28 days, with the same organic loading rate (OLR) of 1.88 ± 0.2 kg VS/ m3-day. The reactor with the lowest SRT (14 days) had the highest VS and VFA removal at 73.6 and 67.6% and lowest TAN concentration at 0.78 g NH4+-N/L, followed by the 21 day and 28 day reactors. This was likely due to the fast microbial growth rates and substrate utilization rates in this reactor compared with the other two. The 14 day reactor had the highest CH4 yield at 0.33 m3CH4/kg VS added and readily biodegradable COD concentration at 0.93 COD/L. The variations in CH4 yield and readily biodegradable COD concentrations between the three reactors were not statistically significant. Denitrification potential for the reactors was 1.20, 0.73 and 0.56 g COD/g N for 14, 21 and 28 day reactors, respectively, and the differences were statistically significant. None of the reactors achieved a denitrification potential of 5 g COD/g N, the amount required to use effluent of anaerobically digested swine waste as an internal carbon source in a BNR. This was attributed to operating conditions such as freezing and thawing of the raw swine waste that maximized CH4 yield and lowered the readily biodegradable COD concentration. In addition the 14 day reactor had low TAN concentrations thus increasing the denitrification potential of the centrate from that reactor.
|
177 |
Polymer nanocomposite foams : fabrication, characterization, and modelingKim, Yongha 31 January 2013 (has links)
Polymer nanocomposite foams have attracted tremendous interests due to their multifunctional properties in addition to the inherited lightweight benefit of being foamed materials. Polymer nanocomposite foams using high performance polymer and bio-degradable polymer with carbon nanotubes were fabricated, and the effects of foam density and pore size on properties were characterized. Electrical conductivity modeling of polymer nanocomposite foams was conducted to investigate the effects of density and pore size.
High performance polymer Polyetherimide (PEI) and multi-walled carbon nanotube (MWCNT) nanocomposites and their foams were fabricated using solvent-casting and solid-state foaming under different foaming conditions. Addition of MWCNTs has little effect on the storage modulus of the nanocomposites. High glass transition temperature of PEI matrix was maintained in the PEI/MWCNT nanocomposites and foams. Volume electrical conductivities of the nanocomposite foams beyond the percolation threshold were within the range of electro-dissipative materials according to the ANSI/ESD standard, which indicates that these lightweight materials could be suitable for electro-static dissipation applications with high temperature requirements.
Biodegradable Polylactic acid (PLA) and MWCNT nanocomposites and their foams were fabricated using melt-blending and solid-state foaming under different foaming conditions. Addition of MWCNTs increased the storage modulus of PLA/MWCNT composites. By foaming, the glass transition temperature increased. Volume electrical conductivities of foams with MWCNT contents beyond the percolation threshold were again within the range of electro-dissipative materials according to the ANSI/ESD standard. The foams with a saturation pressure of 2 MPa and foaming temperature of 100 °C showed a weight reduction of 90% without the sacrifice of electrical conductivity. This result is promising in terms of multi-functionality and material saving. At a given CNT loading expressed as volume percent, the electrical conductivity increased significantly as porosity increased.
A Monte-Carlo simulation model was developed to understand and predict the electrical conductivity of polymer/MWCNT nanocomposite foams. Two different foam morphologies were considered, designated as Case 1: volume expansion without nanotube rearrangement, and Case 2: nanotube aggregation in cell walls. Simulation results from unfoamed nanocomposites and the Case 1 model were validated with experimental data. The results were in good agreement with those from PEI/MWCNT nanocomposites and their foams, which had a similar microstructure as modeled in Case 1. Porosity effects on electrical conductivity were investigated for both Case 1 and Case 2 models. There was no porosity effect on electrical conductivity at a given volume percent CNT loading for Case 1. However, for Case 2 the electrical conductivity increased as porosity increased. Pore size effect was investigated using the Case 2 model. As pore size increased, the electrical conductivity also increased.
Electrical conductivity prediction of foamed polymer nanocomposites using FEM was performed. The results obtained from FEM were compared with those from the Monte-Carlo simulation method. Feasibility of using FEM to predict the electrical conductivity of foamed polymer nanocomposites was discussed. FEM was able to predict the electrical conductivity of polymer nanocomposite foams represented by the Case 2 model with various porosities. However, it could not capture the pore size effect in the electrical conductivity prediction. The FEM simulation can be utilized to predict the electrical conductivity of Case 2 foams when the percolation threshold is determined by Monte-Carlo simulation to save the computational time. This has only been verified when the pore size is small in the range of a few micrometers. / text
|
178 |
Fabrication of PHBV and PHBV-based composite tissue engineering scaffolds through the emulsion freezing/freeze-drying process andevaluation of the scaffoldsSultana, Naznin. January 2009 (has links)
published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy
|
179 |
Near-IR plasmonic contrast agents for molecular imaging, cell tracking and clinical translationJoshi, Pratixa Paritosh 11 August 2015 (has links)
Gold nanoparticles attain an intense focus in biomedical imaging applications due to their unique optical properties, facile conjugation with biomolecules, and biocompatibility. Although a considerable amount of work towards the development of gold nanoparticles has been completed, these promising contrast agents have not yet reached the clinic due to several challenges including efficient accumulation at the diseased site, sensitivity of detection in vivo, potential adverse effects, and clearance from the body. High signal-to-background ratio is required to enhance sensitivity of detection. Because near infrared (near-IR) light has the best tissue penetration, contrast agents designed to work in this range can significantly increase imaging sensitivity. Moreover, efficient targeting of the molecular biomarkers on diseased cells can decrease the required dosage, increase the site-specific accumulation, and enhance the imaging sensitivity. Molecular-specific contrast agents developed in this project use directional attachment of antibody molecules to the nanoparticle surface, enhancing the targeting efficacy. Additionally, cell-based delivery of diagnostic and therapeutic agents is gaining much interest due to the immune cells’ special access to the avascular, diseased regions. The contrast agents developed in this project enable detection of just a few cells per unit of imaging volume, enable multiplex imaging, and open up a possibility for tracking different cell populations with noninvasive photoacoustic and ultrasound imaging. Finally, the clearance of nanoparticles from the body dictates their clinical translation. The in vivo pharmacokinetics study along with the proposed in vitro model explored in this project will enable fast, reliable, and cost-efficient screening of promising agents and facilitate quick optimization of nanoparticles for their potential use in the clinic. / text
|
180 |
Dyeing diversity : Exploring interrelations between plant dyeing techniques, design methods and biodegradable materials in textile designVoksepp, Emmy January 2015 (has links)
This work explores the expressive potential of plant dyeing techniques in relation to weaving by proposing a method in regard to non-toxic containment, biodegradable materials and ethical values. Textile design and ethical values have been combined to create an “Textethical Design Method”. The personal ethical values that have been used in this project are based on a “diversity perspective”. These consist of openness in material choices that wish to expand the view of quality in relation to textile material, but also by connecting and evolving the expression through knowledge between the material selections, production and aesthetics. This project focus on finding plant dyes that are uncharacteristic for the earth tones that plant dyeing techniques often are associated with, where red cabbage was the most successful pigment. The textile techniques that will be used are plant dyeing on a multiplied layered weaved surface to investigate depth through color and three-dimensional shape. The project strives to contribute with development in design methods, sustainability and broader the field of plant dyeing techniques.
|
Page generated in 0.2809 seconds