Spelling suggestions: "subject:"bioinformatics (computational biology)"" "subject:"bioinformatics (computational ciology)""
71 |
Development of database support for production of doubled haploidsEngerberg, Malin January 2002 (has links)
In this project relational and Lotus Notes database technology are evaluated with regard to their suitability in providing computer-based support in plant breeding in general and specifically in the production of doubled haploids. The two developed databases are compared based on a set of requirements produced together with the DH-group which is the main users of the databases. The results indicate that both Lotus Notes and the relational databases are able to fulfil all needs documented in this project, although both systems have their limitations. An often expressed opinion is that it is difficult to combine biology and databases. The experience gained in this project however suggests that it does not need to be the case in instances where data is not as complicated as often discussed. Observations made during this project indicate that data warehousing with integrated data mining and OLAP tools are surprisingly similar to how the DH-group at Svalöf Weibull works and could be a suitable solution for the production of doubled haploids.
|
72 |
Analysing subsets of gene expression data to find putatively co-regulated genesKarjalainen, Merja January 2002 (has links)
This project is an investigation of whether analysing subsets of time series gene expression data can give additional information about putatively co-regulated genes, compared to only using the whole time series. The original gene expression data set was partitioned into subsets and similarity was computed for both the whole timed series and subsets. Pearson correlation was used as similarity measure between gene expression profiles. The results indicate that analysing co-expression in subsets of gene expression data derives true-positive connections, with respect to co-regulation, that are not detected by only using the whole time series data. Unfortunately, with the actual data set, chosen similarity measure and partitioning of the data, randomly generated connections have the same amount of true-positives as the ones derived by the applied analysis. However, it is worth to continue further analysis of the subsets of gene expression data, which is based on the multi-factorial nature of gene regulation. E.g. other similarity measures, data sets and ways of partitioning the data set should be tried.
|
73 |
3DPOPS : From carbohydrate sequence to 3D structureNordström, Rickard January 2002 (has links)
In this project a web-based system called 3DPOPS have been designed, developed and implemented. The system creates initial 3D structures of oligosaccharides according to user input data and is intended to be integrated with an automatized 3D prediction system for saccharides. The web interface uses a novel approach with a dynamically updated graphical representation of the input carbohydrate. The interface is embedded in a web page as a Java applet. Both expert and novice users needs are met by informative messages, a familiar concept and a dynamically updated graphical user interface in which only valid input can be created. A set of test sequences was collected from the CarbBank database. An initial structure to each sequence could be created. All contained the information necessary to serve as starting points in a conformation search carried out by a 3D prediction system for carbohydrates.
|
74 |
Comparing NR Expression among Metabolic Syndrome Risk FactorsJacobsson, Annelie January 2003 (has links)
The metabolic syndrome is a cluster of metabolic risk factors such as diabetes type II, dyslipidemia, hypertension, obesity, microalbuminurea and insulin resistance, which in the recent years has increased greatly in many parts of the world. In this thesis decision trees were applied to the BioExpress database, including both clinical data about donors and gene expression data, to investigate nuclear receptors ability to serve as markers for the metabolic syndrome. Decision trees were created and the classification performance for each individual risk factor were then analysed. The rules generated from the risk factor trees were compared in order to search for similarities and dissimilarities. The comparisons of rules were performed in pairs of risk factors, in groups of three and on all risk factors and they resulted in the discovery of a set of genes where the most interesting were the Peroxisome Proliferator Activated Receptor - Alpha, the Peroxisome Proliferator Activated Receptor - Gamma and the Glucocorticoid Receptor. These genes existed in pathways associated with the metabolic syndrome and in the recent scientific literature.
|
75 |
The effect of normalization methods on the identification of differentially expressed genes in microarray dataKristinsson, Vilhelm Yngvi January 2007 (has links)
In this thesis the effect of normalization methods on the identification of differentially expressed genes is investigated. A zebrafish microarray dataset called Swirl was used in this thesis work. First the Swirl dataset was extracted and visualized to view if the robust spline and print tip loess normalization methods are appropriate to normalize this dataset. The dataset was then normalized with the two normalization methods and the differentially expressed genes were identified with the LimmaGUI program. The results were then evaluated by investigating which genes overlap after applying different normalization methods and which ones are identified uniquely after applying the different methods. The results showed that after the normalization methods were applied the differentially expressed genes that were identified by the LimmaGUI program did differ to some extent but the difference was not considered to be major. Thus the main conclusion is that the choice of normalization method does not have a major effect on the resulting list of differentially expressed genes.
|
76 |
Implementing a visualization tool for myocardial strain tensorsRönnbrant, Anders January 2005 (has links)
The heart is a complex three-dimensional structure with mechanical properties that are inhomogeneous, non-linear, time-variant and anisotropic. These properties affect major physiological factors within the heart, such as the pumping performance of the ventricles, the oxygen demand in the tissue and the distribution of coronary blood flow. During the cardiac cycle the heart muscle tissue is deformed as a consequence of the active contraction of the muscle fibers and their relaxation respectively. A mapping of this deformation would give increased understanding of the mechanical properties of the heart. The deformation induces strain and stress in the tissue which are both mechanical properties and can be described with a mathematical tensor object. The aim of this master's thesis is to develop a visualization tool for the strain tensor objects that can aid a user to see and/or understand various differences between different hearts and spatial and temporal differences within the same heart. Preferably should the tool be general enough for use with different types of data.
|
77 |
Grouping Biological DataRundqvist, David January 2006 (has links)
Today, scientists in various biomedical fields rely on biological data sources in their research. Large amounts of information concerning, for instance, genes, proteins and diseases are publicly available on the internet, and are used daily for acquiring knowledge. Typically, biological data is spread across multiple sources, which has led to heterogeneity and redundancy. The current thesis suggests grouping as one way of computationally managing biological data. A conceptual model for this purpose is presented, which takes properties specific for biological data into account. The model defines sub-tasks and key issues where multiple solutions are possible, and describes what approaches for these that have been used in earlier work. Further, an implementation of this model is described, as well as test cases which show that the model is indeed useful. Since the use of ontologies is relatively new in the management of biological data, the main focus of the thesis is on how semantic similarity of ontological annotations can be used for grouping. The results of the test cases show for example that the implementation of the model, using Gene Ontology, is capable of producing groups of data entries with similar molecular functions.
|
78 |
Finding potential electroencephalography parameters for identifying clinical depressionGustafsson, Johan January 2015 (has links)
This master thesis report describes signal processing parameters of electroencephalography (EEG) signals with a significant difference between the signals from the animal model of clinical depression and the non-depressed animal model. The signal from the depressed model had a weaker power in gamma (30 - 80 Hz) than the non-depressed model during awake and it had a stronger power in delta (1.5 - 4 Hz) during sleep. The report describes the process of using visualisation to understand the shape of the signal which helps with interpreting results and helps with the development of parameters. A generic tool for time-frequency analysis was improved to cope with the size of the weeklong EEG dataset. A method for evaluating the quality of how well the EEG parameters are able to separate the strains with as short recordings as possible was developed. This project shows that it is possible to separate an animal model of depression from an animal model of non-depression based on its EEG and that EEG-classifiers may work as indicative classifiers for depression. Not a lot of data is needed. Further studies are needed to verify that the results are not overly sensitive to recording setup and to study to what extent the results are translational. It might be some of the EEG parameters with significant differences described here are limited to describe the difference between the two strains FSL and SD. But the classifiers have reasonable biological explanations that makes them good candidates for being translational EEG-based classifiers for clinical depression.
|
79 |
Mathematical modeling of normal and cancer prostate signaling pathwaysStamouli, Sofia January 2015 (has links)
The field of systems biology has become very popular as a means to deal with cancer as well as other complex biological issues. It enables scientists to gain an insight into difficult conditions through mathematical approaches that have been developed. Prostate cancer is the second leading cause of death among men after skin cancer and its heterogeneity makes it a complex disease. In this study we focus on three pathways known to play crucial roles in the formation of prostate cancer. By using a mathematical model that combines all of them we describe the interactions taking place during signal transduction in the prostate under normal and cancer conditions.
|
80 |
Computational Approaches to the Degeneration of Brain Networks and Other Complex NetworksMengiste, Simachew Abebe January 2017 (has links)
Networks are ubiquitous with several levels of complexity, configuration, hierarchy and function. Many micro- and macro-scale biological or non-biological interactions define complex systems. Our most sophisticated organ, the brain, accommodates the interaction of its billions of neurons through trillions of synapses and is a good example of a complex system. Network structure has been shown to be the key to determine network functions. For instance, communities or modules in the network explain functional segregation and modular interactions reveal functional integration. Moreover, the dynamics of cortical networks have been experimentally shown to be linked to the behavioral states of the animal. The level of rate and synchrony have been demonstrated to be related to sleep (inactive) and awake (active) states of animals. The structure of brain networks is not static. New synapses are formed and some existing synapses or neurons die due to neurodegenerative disease, environmental influences, development and learning, etc. Although there are many studies on the function of brain networks, the changes by neuronal and synaptic degeneration have not been so far in focus. In fact, there is no known mathematical model on the progressive pattern of synaptic pruning and neurodegeneration. The goal of this dissertation is to develop various models of progressive network degeneration and analyze their impact on structural and functional features of the networks. In order to expand the often chosen approach of the "random networks", the "small world" and "scale-free" network topologies are considered which have recently been proposed as alternatives. The effect of four progressive synaptic pruning strategies on the size of critical sites of brain networks and other complex networks is analyzed. Different measures are used to estimate the levels of population rate, regularity, synchrony and pair-wise correlation of neuronal networks. Our analysis reveals that the network degree, instead of network topology, highly affects the mean population activity. / <p>QC 20170906</p>
|
Page generated in 0.1468 seconds