Spelling suggestions: "subject:"biologie"" "subject:"debiologie""
951 |
Insights into the RNA Polymerase CTD codeSchueller, Roland 12 December 2013 (has links) (PDF)
No description available.
|
952 |
Principles of protein group SUMO modification substantiated in DNA repairPsakhye, Ivan 29 October 2013 (has links) (PDF)
Posttranslational modifications (PTMs) of proteins by covalent attachment of functional groups (like phosphorylation, acetylation, methylation, glycosylation, etc.) are of key importance for the cell as they regulate various aspects of protein behavior after its synthesis, e.g., dictate protein interaction properties, change catalytic activity of enzymes, induce conformational changes, guide subcellular localization and determine protein stability. A special class of protein PTMs is the conjugation of small proteins of the ubiquitin family to typically acceptor lysine residues of the substrates. The reversible nature of this PTM and the presence of dedicated domains that specifically recognize modified substrates make this type of protein modification instrumental for the regulation of numerous biological pathways. For ubiquitylation, strong substrate selectivity due to the presence of highly diversified conjugation machinery is characteristic and well studied, especially in case of ubiquitin’s proteolytic role. On the contrary, much less is known about the principles of substrate specificity and mechanisms of PTM action in the ubiquitin-like protein SUMO modification system.
Despite the fact that SUMOylation specifically targets hundreds of substrates and major conjugation steps are identical with ubiquitin system, strikingly only a handful of enzymes operate in the SUMO pathway, suggesting that other principles of substrate selectivity must apply and perhaps distinct mechanisms of PTM action exist in the SUMO pathway. Moreover, the recognition of SUMO modification is surprisingly simple and relies mainly on a short hydrophobic sequence known as SUMO-interacting motif (SIM), in striking contrast to the ubiquitin system, where numerous ubiquitin-binding domains exist with different interaction specificities. All these, together with the observations that SUMO conjugation machinery seems rather promiscuous in vitro, that typically only a small fraction of a protein is being SUMOylated at a given time, and that specific SUMOylation-defective mutants often exhibit no obvious phenotypes, whereas SUMO pathway mutants do, emphasize the question of substrate specificity in the SUMO system and suggest other principles of SUMO action on its substrates.
Here, we address the question of SUMOylation specificity and function using DNA double-strand break (DSB) repair pathway via homologous recombination (HR) as a case study because of its strong ties to the SUMO system. First, using SILAC-based proteomic approach we show that proteins acting in the same DNA repair pathway become collectively SUMOylated upon a specific stimulus (HR factors – upon DSB induction; nucleotide excision repair factors – upon exposure to UV light), suggesting that SUMO machinery often targets protein groups within the same pathway. Then, focusing on the DSB repair we find that DNA-bound SUMO ligase Siz2 catalyzes collective multisite SUMOylation of a whole set of HR factors. Repair proteins are loaded onto resected single-stranded DNA (ssDNA) in the vicinity of the ligase, thus making exposure of ssDNA a precise trigger for modification. Protein group SUMOylation fosters physical interactions between the HR proteins engaged in DNA repair, because not only that they become collectively modified at multiple SUMO-acceptor sites, but they also possess multiple SIMs, which promote SUMO-SIM mediated complex formation. Only wholesale elimination of SUMOylation of the core HR proteins significantly affects the HR pathway by slowing down DNA repair, suggesting that SUMO acts synergistically on several proteins. Thus, we show that SUMOylation collectively targets functionally engaged protein group rather than individual proteins, whereas localization of modification enzymes and specific triggers ensure substrate specificity.
|
953 |
Molecular characterisation of three novel photosynthetic proteins in arabidopsis thalianaArmbruster, Ute 26 May 2008 (has links) (PDF)
No description available.
|
954 |
Molecular chaperones involved in preprotein targeting to plant organellesFellerer, Christine 01 June 2012 (has links) (PDF)
No description available.
|
955 |
The role of elongation factor EF-P in translation and in copy number control of the transcriptional regulator CadC in Escherichia coliUde, Susanne Caroline Margarethe 19 June 2013 (has links) (PDF)
Enterobacteria have evolved several strategies to survive the acidic environment of the gastrointestinal tract. One of the acid stress resistance systems is the Cad system in Escherichia coli, which is induced by low pH and in the presence of external lysine. It consists of CadA, which catalyzes the decarboxylation of lysine to cadaverine, the lysine/cadaverine antiporter CadB and the pH sensing transcriptional regulator CadC. Moreover, the lysine permease LysP inhibits the induction of cadBA expression when lysine is absent, and the small histon-like molecule H-NS acts as repressor for both cadBA and cadC transcription. Additionally, a random mutagenesis approach revealed that a deletion in yjeK leads to highly reduced cadaverine production. YjeK acts as 2,3-lysine aminomutase (LAM) while catalyzing the isomerization of (S)-α-lysine to (R)-β-lysine. The truncated lysyl-tRNA synthetase YjeA uses (R)-β-lysine as substrate to post-translationally modify and to activate the translation elongation factor EF-P at a conserved lysine residue (K34). EF-P and its ortholog eukaryotic initiation factor 5A (eIF5A) have been investigated for more than thirty years, but their roles in translation remained enigmatic.
In this work the role of active EF-P in the Cad system was investigated in more detail. Reduced cadBA expression in ΔyjeA, ΔyjeK642-1029 and Δefp mutants was linked to impaired CadC translation. As the translation of cadA and cadB was EF-P independent, a general role of EF-P in translation could be excluded.
The identification of CadC as first direct target for EF-P in E. coli allowed further investigations on the role of EF-P in translation. Determining the β-galactosidase activities of CadC´-LacZ translational fusions of increasing CadC length in efp- and efp+ cells revealed that EF-P is required for translation of the sequence found between codon 108 and 158 in cadC. This region comprises a cluster of three consecutive prolines (Pro120-Pro121-Pro122). Substitution of these prolines by alanines diminished EF-P dependency. Remarkably, cells harboring the CadC-PPPIP/AAAIS variant revealed cadBA expression even under non-inducing conditions. Thus, EF-P tightly controls the CadC copy number, which is crucial for stress dependent regulation of the Cad system.
In order to investigate the work mechanism of EF-P in more detail, EF-P independent CadC´-LacZ hybrids were employed to artificially introduce prolines. Three consecutive prolines were sufficient for EF-P dependency, regardless of the codon or the context. The proline-rich proteins AmiB, FlhC, Flk, NlpD, RzoR, TonB and UvrB also showed EF-P dependent expression. Thus, the recognition of three consecutive prolines by EF-P is a general mechanism and not limited to CadC. Dr. Agata Starosta of the group of Dr. Daniel Wilson (Gene Center, LMU Munich) confirmed ribosomal stalling at polyproline-stretches in samples lacking EF-P with in vitro translation assays.
Finally it was investigated, if EF-P expression and modification could be stress-dependently regulated. In this work first hints are given that the efp promoter contains a repressor site, and that expression of yjeA and yjeK is dependent on the pH of the medium and the presence of the small RNA binding protein Hfq. This leads to the suggestion that small regulatory RNAs are also involved in regulation of the EF-P modification enzymes.
In conclusion, the results obtained in this work reveal a new regulatory mechanism by EF-P dependent translation. 100-1000´s of polyproline rich proteins exist in bacteria, archaea and eukaryotes. Therefore, EF-P and its orthologs aIF5A and eIF5A most likely play an important role in the adjustment of copy numbers of proteins with different functions in all kingdoms of life.
|
956 |
Analysis of the Barr body with super-resolution microscopySmeets, Daniel 22 November 2013 (has links) (PDF)
X chromosome inactivation (XCI) in female mammalian cells is an ideal model system to study the relationship of epigenetic regulation and higher-order chromatin structure. However, light microscopic studies of chromosomal organization have long been limited by the diffraction barrier of optical resolution. Super-resolution 3D-structured illumination microscopy (3D-SIM) – one of several recent techniques that circumvent this limitation – enables multicolor optical sectioning of entire cells with eightfold-improved volumetric resolution compared to conventional fluorescence imaging methods. In the present work, 3D-SIM has been applied to analyze higher-order chromatin structure of the Barr body in mammalian nuclei, a characteristic hallmark of XCI, with yet unprecedented detail.
First, the increased resolution prompted to reappraise the potential detrimental effect of the DNA-FISH procedure on chromatin structure. Comparative analyses revealed slight deteriorations at the resolution level of 3D-SIM, especially within more decondensed euchromatin sites within the nuclear interior. In contrast, overall nuclear morphology and the nuclear envelope as well as heterochromatic sites in general maintained well preserved. The results suggest that DNA-FISH studies can benefit from a combination with super-resolution microscopy. In particular, when keeping in mind the current developments of the FISH technique with increasingly small and higher-complexity probes.
The compact shape of the Barr body led to the assumption of a contribution of this special higher-order chromatin structure to the establishment and maintenance of the silenced state in the inactive X chromosome (Xi). However, a confirmation of this view has always been hampered by the restrictions of conventional light microscopy. In this work, the 3D chromosomal organization of the Xi and autosomes has been investigated with 3D-SIM in various human and mouse somatic cells and in mouse embryonic stem cell (ESC) lines. The precise subchromosomal localization of a variety of factors involved in XCI in different developmental states was qualitatively and quantitatively assessed utilizing combined immunofluorescence, EdU- pulse and RNA-/DNA-FISH labeling protocols and novel data analysis tools customized for the special requirements of 3D-SIM. The results demonstrate that all autosomes are made of a three-dimensional interconnected network of chromatin domains (CDs, or topology associated domains, TADs) of highly-variable shape and dynamics. CDs/TADs are comprised of a compacted chromatin core enriched with repressive marks, which is collectively proposed to be the functionally passive chromatin compartment (PNC). This PNC is surrounded by a 50 – 150 nm locally defined, less compacted perichromatin region (PR) that is enriched with active histone modifications and pervaded by a three-dimensional interchromatin (IC) network. The PR and the IC are collectively referred to as being the functionally relevant active nuclear compartment (ANC) that harbors all major nuclear processes, including transcription and replication. 3D-SIM data revealed that the Barr body maintains this principle compartmentalization and that it is still pervaded by a narrow ANC network, which is able to fulfill its functional role as a hub for replication or rarely occurring expression of XCI-escape genes. Live-cell super-resolution imaging on HeLa H2B-GFP cells confirmed that the observed chromatin features do not reflect fixation artifacts.
Xist RNA, the key factor of XCI, has been found to be preferentially located as distinct discernible foci within the ANC throughout the entire volume of the Barr body. Here, it is tightly associated with a Xi-specific form of the nuclear matrix protein SAF-A, which confirms a previously suggested role for this Xi-enriched protein in Xist RNA spreading. In contrast, Xist RNA shows no spatial correlation with repressive Xi-enriched histone marks that are found within compacted chromatin sites. This specific localization of Xist RNA reflects an intrinsic feature as it is already present during early spreading in differentiating female ESCs, where it precedes chromatin compaction concomitant with RNA Polymerase II exclusion. Its localization is further confirmed in a male ESC line carrying an inducible Xist transgene on an autosome, but where Xist RNA fails to form a true autosomal Barr body, which is less compacted and maintains transcriptional activity. Last, Xist RNA shows no direct association with PRC2, the mediator of H3K27me3, which is in contrast to the generally believed direct recruitment model of PRC2 to the Xi by Xist RNA.
The data collected in this work reflects further support and a refinement of the not unequivocally accepted CT-IC (chromosome territory - interchromatin compartment) model of higher-order chromosome architecture. In addition, a first attempt has been made to integrate these findings with a recently growing number of studies using chromosome conformation capturing (3C)-based techniques and to complement them on the single-cell level.
Finally, a novel model for Xist RNA function in XCI is presented, which proposes a sequence-independent structural role for gene silencing and the formation of a repressive chromatin compartment.
|
957 |
Systematic analysis of lysine acetyltransferasesFeller, Christian 28 October 2014 (has links) (PDF)
No description available.
|
958 |
A screen to identify factors in translation-dependent retrograde signalingMittermayr, Lukas 30 September 2013 (has links) (PDF)
No description available.
|
959 |
Proteomics of newly assembled chromatinPusch, Miriam 25 February 2014 (has links) (PDF)
No description available.
|
960 |
Differential modes of Eph signaling in olfactory dendrite targeting of DrosophilaSardana, Juhi 24 February 2014 (has links) (PDF)
No description available.
|
Page generated in 0.0482 seconds