• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 20
  • 13
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 116
  • 116
  • 116
  • 45
  • 36
  • 36
  • 31
  • 31
  • 22
  • 22
  • 18
  • 18
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Correção do efeito Show-Through baseada em técnicas de separação cega de fontes

Castillo, Renato Martín De La Rosa January 2015 (has links)
Orientador: Prof. Dr. Ricardo Suyama / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia da Informação, 2015. / No processo de digitalização de documentos impressos ou manuscritos que apresentam informação em ambos os lados da folha (frente e verso), é comum encontrar uma distorção na imagem digitalizada conhecida como Efeito Show-Through, na qual a imagem digitalizada de um dos lados do documento sofre a interferência da imagem presente no outro lado da folha. O problema de remoção dessa interferência pode ser visto como uma instância do problema geral de Separação Cega de Fontes (BSS ¿ Blind Source Separation), para o qual diferentes técnicas foram propostas, baseadas nas características das fontes e no processo de mistura. No presente trabalho avaliamos diferentes técnicas para a solução do problema de Show-through que utilizam os conceitos relacionados ao problema de Separação Cega de Fontes, buscando identificar vantagens e desvantagens dos diferentes métodos. As técnicas avaliadas, baseadas em três diferentes abordagens em termos do critério de adaptação dos parâmetros, foram testadas com diferentes tipos de documentos (textos antigos ,manuscritos,jornal,etc) digitalizados, considerando misturas sintéticas e misturas reais, obtidas com a digitalização de documentos impressos. Os resultados obtidos revelam pontos fortes e fracos das técnicas avaliadas, e poderão servir como referência para o desenvolvimento de novas técnicas para a correção do efeito Show-Through. / In the digitalization process of printed documents or manuscripts that contain information on both through sides of the paper (front and back), it is common to observe the so-called Show-Thorugh Effet, in which the image in the back of the document interferes in the digitized image of the front side. Removing this kind of interference can be seen as an instance of the general Blind Source Separation Problem (BSS), for which several different techniques have been proposed in the literature, considering specific characteristics of the sources and of the mixing process. The objective of the present work is to evaluate different methods for the mitigation of the Show-Through effect, based in concepts related to the BSS problem. The evaluated tools, based on three different approaches for parameter adaptation, were tested with different kinds of documents (old texts, manuscripts, newspaper), considering synthetic and real mixtures. The results reveal strong and weak points of the studied methods, which can serve as a valuable reference in the development of new techniques for the Show-Through effect mitigation.
62

Separação cega de sinais de fala utilizando detectores de voz. / Blind separation of speech signals using voice detectors.

Ronaldo Alencar da Rocha 28 January 2014 (has links)
Neste trabalho contemplamos o emprego de detectores de voz como uma etapa de pré- processamento de uma técnica de separação cega de sinais implementada no domínio do tempo, que emprega estatísticas de segunda ordem para a separação de misturas convolutivas e determinadas. Seu algoritmo foi adaptado para realizar a separação tanto em banda cheia quanto em sub-bandas, considerando a presença e a ausência de instantes de silêncio em misturas de sinais de voz. A ideia principal consiste em detectar trechos das misturas que contenham atividade de voz, evitando que o algoritmo de separação seja acionado na ausência de voz, promovendo ganho de desempenho e redução do custo computacional. / In this work we contemplate the use of voice detectors as a preprocessing step of a time-domain blind source separation technique, employing second order statistics in the separation of convolutive and determined mixtures. This algorithm is adapted to perform the separation both in fullband and in subbands, considering the presence and the absence of a moments of silence in mixtures of voice signals. The main idea aims at detect portions of the mixtures containing voice activity, avoiding that the separation algorithm is triggered in the absence of voice, promoting performance improvement and reduced computational cost.
63

Análise de componentes esparsos locais com aplicações em ressonância magnética funcional / Local sparse component analysis: an application to funcional magnetic resonance imaging

Gilson Vieira 13 October 2015 (has links)
Esta tese apresenta um novo método para analisar dados de ressonância magnética funcional (FMRI) durante o estado de repouso denominado Análise de Componentes Esparsos Locais (LSCA). A LSCA é uma especialização da Análise de Componentes Esparsos (SCA) que leva em consideração a informação espacial dos dados para reconstruir a informação temporal de fontes bem localizadas, ou seja, fontes que representam a atividade de regiões corticais conectadas. Este estudo contém dados de simulação e dados reais. Os dados simulados foram preparados para avaliar a LSCA em diferentes cenários. Em um primeiro cenário, a LSCA é comparada com a Análise de Componentes Principais (PCA) em relação a capacidade de detectar fontes locais sob ruído branco e gaussiano. Em seguida, a LSCA é comparada com o algoritmo de Maximização da Expectativa (EM) no quesito detecção de fontes dinâmicas locais. Os dados reais foram coletados para fins comparativos e ilustrativos. Imagens de FMRI de onze voluntários sadios foram adquiridas utilizando um equipamento de ressonância magnética de 3T durante um protocolo de estado de repouso. As imagens foram pré-processadas e analisadas por dois métodos: a LSCA e a Análise de Componentes Independentes (ICA). Os componentes identificados pela LSCA foram comparados com componentes comumente reportados na literatura utilizando a ICA. Além da comparação direta com a ICA, a LSCA foi aplicada com o propósito único de caracterizar a dinâmica das redes de estado de repouso. Resultados simulados mostram que a LSCA é apropriada para identificar fontes esparsas locais. Em dados de FMRI no estado de repouso, a LSCA é capaz de identificar as mesmas fontes que são identificadas pela ICA, permitindo uma análise mais detalhada das relações entre regiões dentro de e entre componentes e sugerindo que muitos componentes identificados pela ICA em FMRI durante o estado de repouso representam um conjunto de componentes esparsos locais. Utilizando a LSCA, grande parte das fontes identificadas pela ICA podem ser decompostas em um conjunto de fontes esparsas locais que não são necessariamente independentes entre si. Além disso, as fontes identificadas pela LSCA aproximam muito melhor o sinal temporal observado nas regiões representadas por seus componentes do que as fontes identificadas pela ICA. Finalmente, uma análise mais elaborada utilizando a LSCA permite estimar também relações dinâmicas entre os componentes previamente identificados. Assim, a LSCA permite identificar relações clássicas bem como relações causais entre componentes do estado de repouso. As principais implicações desse resultado são que diferentes premissas permitem decomposições aproximadamente equivalentes, entretanto, critérios menos restritivos tais como esparsidade e localização permitem construir modelos mais compactos e biologicamente mais plausíveis. / This thesis presents Local Sparse Component Analysis (LSCA), a new method for analyzing resting state functional magnetic resonance imaging (fMRI) datasets. LSCA, a extension of Sparse Component Analysis (SCA), takes into account data spatial information to reconstruct temporal sources representing connected regions of significant activity. This study contains simulation data and real data. The simulated data were prepared to evaluate the LSCA in different scenarios. In the first scenario, the LSCA is compared with Principal Component Analysis (PCA) for detecting local sources under Gaussian white noise. Then, LSCA is compared with the expectation maximization algorithm (EM) for detecting the dynamics of local sources. Real data were collected for comparative and illustrative purposes. FMRI images from eleven healthy volunteers were acquired using a 3T MRI scanner during a resting state protocol. Images were preprocessed and analyzed using LSCA and Independent Components Analysis (ICA). LSCA components were compared with commonly reported ICA components. In addition, LSCA was applied for characterizing the dynamics of resting state networks. Simulated results have shown that LSCA is suitable for identifying local sparse sources.For real resting state FMRI data, LSCA is able to identify the same sources that are identified using ICA, allowing detailed functional connectivity analysis of the identified regions within and between components. This suggests that ICA resting state networks can be further decomposed into local sparse components that are not necessarily independent from each other. Moreover, LSCA sources better represent local FMRI signal oscillations than ISCA sources. Finally, brain connectivity analysis shows that LSCA can identify both instantaneous and causal relationships between resting state components. The main implication of this study is that independence and sparsity are equivalent assumptions in resting state FMRI. However, less restrictive criteria such as sparsity and source localization allow building much more compact and biologically plausible brain connectivity models.
64

Um estudo sobre separação cega de fontes e contribuições ao caso de misturas não-lineares / A study on blind source separation and contributions to the nonlinear case

Duarte, Leonardo Tomazeli, 1982- 08 February 2006 (has links)
Orientadores: João Marcos Travassos Romano, Romis Ribeiro de Faissol Attux / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-06T23:03:11Z (GMT). No. of bitstreams: 1 Duarte_LeonardoTomazeli_M.pdf: 2778720 bytes, checksum: ff42018b4aa2d824cd1f001655a42ddf (MD5) Previous issue date: 2006 / Resumo: O presente trabalho tem como objetivo a realização de um estudo sobre o problema de separação cega de fontes. Em uma primeira parte, considera-se o caso clássico em que o sistema misturador é de natureza linear. Na seqüência, a extensão ao caso não-linear é tratada. Em particular, enfatizamos uma importante classe de modelos não-lineares, os modelos com não-linearidade posterior (PNL). Com o intuito de contornar uma dificuldade relacionada à convergência para mínimos locais no treinamento de sistemas separadores PNL, uma nova técnica é proposta. Tal solução se baseia no uso de um algoritmo evolutivo na etapa de treinamento e de um estimador de entropia baseado em estatísticas de ordem. A eficácia do algoritmo proposto é verificada através de simulações em diferentes cenários / Abstract: The aim of this work is to study the problem of blind source separation (BSS). In a first part, the classical case in which the mixture system is of linear nature is considered. Afterwards, the nonlinear extension of the BSS problem is addressed. In special, an important class of nonlinear models, the post-nonlinear (PNL) models, is emphasized. In order to overcome a problem related to the convergence to local minima in the training of a PNL separating system, a novel technique is proposed. The bases of such solution are the application of an evolutionary algorithm in the training stage and the use of an entropy estimator based on order statistics. The efficacy of the proposal is attested by simulations conducted in different scenarios / Mestrado / Telecomunicações e Telemática / Mestre em Engenharia Elétrica
65

Proposta de metodos de separação cega de fontes para misturas convolutivas e não-lineares / Proposal of blind source separation methods for convolutive and nonlinear mixtures

Suyama, Ricardo 09 August 2018 (has links)
Orientador: João Marcos Travassos Romano / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-09T16:56:34Z (GMT). No. of bitstreams: 1 Suyama_Ricardo_D.pdf: 28793623 bytes, checksum: cf06bdad425402b4624bbd169bfad249 (MD5) Previous issue date: 2007 / Resumo: O problema de separação cega de fontes (BSS - Blind Source Separation) vem despertando o interesse de um número crescente de pesquisadores. Esse destaque é devido, em grande parte, à formulação abrangente do problema, que torna possível o uso das técnicas desenvolvidas no contexto de BSS nas mais diversas áreas de aplicação. O presente trabalho tem como objetivo propor novos métodos de solução do problema de separação cega de fontes, nos casos de mistura convolutiva e mistura não-linear. Para o primeiro caso propomos um método baseado em predição não-linear, cujo intuito é eliminar o caráter convolutivo da mistura e, dessa forma, separar os sinais utilizando ferramentas bem estabelecidas no contexto de misturas lineares sem memória. No contexto de misturas não-lineares, propomos uma nova metodologia para separação de sinais em um modelo específico de mistura denominado modelo com não-linearidade posterior (PNL - Post Nonlinear ). Com o intuito de minimizar problemas de convergência para mínimos locais no processo de adaptação do sistema separador, o método proposto emprega um algoritmo evolutivo como ferramenta de otimização, e utiliza um estimador de entropia baseado em estatísticas de ordem para avaliar a função custo. A eficácia de ambos os métodos é verificada através de simulações em diferentes cenários / Abstract: The problem of blind source separation (BSS) has attracted the attention of agrowing number of researchers, mostly due to its potential applications in a significant number of different areas. The objective of the present work is to propose new methods to solve the problem of BSS in the cases of convolutive mixtures and nonlinear mixtures. For the first case, we propose a new method based on nonlinear prediction filters. The nonlinear structure is employed to eliminate the convolutive character of the mixture, hence converting the problem into an instantaneous mixture, to which several well established tools may be used to recover the sources. In the context of nonlinear mixtures, we present a new methodology for signal separation in the so-called post-nonlinear mixing models (PNL). In order to avoid convergence to local minima, the proposed method uses an evolutionary algorithm to perform the optimization of the separating system. In addition to that, we employ an entropy estimator based on order-statistics to evaluate the cost function. The effectiveness of both methods is assessed through simulations in different scenarios / Doutorado / Telecomunicações e Telemática / Doutor em Engenharia Elétrica
66

Sobre separação cega de fontes : proposições e analise de estrategias para processamento multi-usuario

Cavalcante, Charles Casimiro 30 April 2004 (has links)
Orientadores: João Marcos Travassos Romano, Francisco Rodrigo Porto Cavalcanti / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-04T00:19:46Z (GMT). No. of bitstreams: 1 Cavalcante_CharlesCasimiro_D.pdf: 8652621 bytes, checksum: bf432c4988b60a8e2465828f4f748b47 (MD5) Previous issue date: 2004 / Resumo: Esta tese é dedicada ao estudo de tecnicas de separação cega de fontes aplicadas ao contexto de processamento multiusuario em comunicações digitais. Utilizando estrategias de estimação da função de densidade de probabilidade (fdp), são propostos dois metodos de processamento multiusuario que permitem recuperar os sinais transmitidos pela medida de similaridade de Kullback-Leibler entre a fdp dos sinais a saida do dispositivo de separação e um modelo parametrico que contem as caracteristicas dos sinais transmitidos. Alem desta medida de similaridade, são empregados diferentes metodos que garantem a descorrelação entre as estimativas das fontes de tal forma que os sinais recuperados sejam provenientes de diferentes fontes. E ainda realizada a analise de convergencia dos metodos e suas equivalencias com tecnicas classicas resultando em algumas importantes relações entre criterios cegos e supervisionados, tais como o criterio proposto e o criterio de maxima a posteriori. Estes novos metodos aliam a capacidade de recuperação da informação uma baixa complexidade computacional. A proposição de metodos baseados na estimativa da fdp permitiu a realização de um estudo sobre o impacto das estatisticas de ordem superior em algoritmos adaptativos para separação cega de fontes. A utilização da expansão da fdp em series ortonormais permite avaliar atraves dos cumulantes a dinamica de um processo de separação de fontes. Para tratar com problemas de comunicação digital e proposta uma nova serie ortonormal, desenvolvida em torno de uma função de densidade de probabilidade dada por um somatorio de gaussianas. Esta serie e utilizada para evidenciar as diferenças em relação ao desempenho em tempo real ao se reter mais estatisticas de ordem superior. Simulações computacionais são realizadas para evidenciar o desempenho das propostas frente a tecnicas conhecidas da literatura em varias situações de necessidade de alguma estrategia de recuperação de sinais / Abstract: This thesis is devoted to study blind source separation techniques applied to multiuser processing in digital communications. Using probability density function (pdf) estimation strategies, two multiuser processing methods are proposed. They aim for recovering transmitted signal by using the Kullback-Leibler similarity measure between the signals pdf and a parametric model that contains the signals characteristics. Besides the similarity measure, different methods are employed to guarantee the decorrelation of the sources estimates, providing that the recovered signals origin from different sources. The convergence analysis of the methods as well as their equivalences with classical techniques are presented, resulting on important relationships between blind and supervised criteria such as the proposal and the maximum a posteriori one. Those new methods have a good trade-off between the recovering ability and computational complexity. The proposal os pdf estimation-based methods had allowed the investigation on the impact of higher order statistics on adaptive algorithms for blind source separation. Using pdf orthonormal series expansion we are able to evaluate through cumulants the dynamics of a source separation process. To be able to deal with digital communication signals, a new orthonormal series expansion is proposed. Such expansion is developed in terms of a Gaussian mixture pdf. This new expansion is used to evaluate the differences in real time processing when we retain more higher order statistics. Computational simulations are carried out to stress the performance of the proposals, faced to well known techniques reported in the literature, under the situations where a recovering signal strategy is required. / Doutorado / Telecomunicações e Telemática / Doutor em Engenharia Elétrica
67

Determination of end user power load profiles by parallel evolutionary computing / Détermination de profils de consommation électrique par évolution artificielle parallèle

Krüger, Frédéric 17 February 2014 (has links)
Il est primordial, pour un distributeur d’énergie électrique, d’obtenir des estimations précises de la demande en énergie de leurs réseaux. Des outils statistiques tels que des profils de consommation électrique offrent des estimations de qualité acceptable. Ces profils ne sont cependant généralement pas assez précis, car ils ne tiennent pas compte de l’influence de facteurs tels que la présence de chauffage électrique ou le type d’habitation. Il est néanmoins possible d’obtenir des profils précis en utilisant uniquement les historiques de consommations d’énergie des clients, les mesures desdéparts 20kV, et un algorithme génétique de séparation de sources. Un filtrage et un prétraitement des données a permis de proposer à l’algorithme génétique de séparation de sources des données adaptées. La séparation de sources particulièrement bruitées est résolue par un algorithme génétique complètement parallélisé sur une carte GPGPU. Les profils de consommation électrique obtenus correspondent aux attentes initiales, et démontrent une amélioration considérable de la précision des estimations de courbes de charge de départs 20kV et de postes de transformation moyenne tension-basse tension. / Precise estimations of the energy demand of a power network are paramount for electrical distribution companies. Statistical tools such as load profiles offer acceptable estimations. These load profiles are, however, usually not precise enough for network engineering at the local level, as they do not take into account factors such as the presence of electrical heating devices or the type of housing. It is however possible to obtain accurate load profiles with no more than end user energy consumption histories, 20kV feeder load measurements, a blind source separation and a genetic algorithm. Filtering and preliminary treatments performed on the data allowed the blind source separation to work with adequate information. The blind source separation presented in this document is successfully solved by a completely parallel genetic algorithm running on a GPGPU card. The power load profiles obtained match the requirements, and demonstrate a considerable improvement in the forecast of 20kV feeder as well as MV substation load curves.
68

Acquisition comprimée multi-longueur d'onde et son application en radioastronomie / Multichannel Compressed Sensing and its Application in Radioastronomy

Jiang, Ming 10 November 2017 (has links)
La nouvelle génération d’instrument d’interféromètre radio, tels que LOFAR et SKA, nous permettra de construire des images radio à haute résolution angulaire et avec une bonne sensibilité. L’un des problèmes majeurs de l’imagerie interférométrie est qu’il s’agit d’un problème inverse mal posé car seulement quelques coefficients de Fourier (visibilités) peuvent être mesurés par un interféromètre radio. La théorie de l’Acquisition Comprimée (Compressed Sensing) nous permet d’envisager ce problème sous un autre angle et son efficacité pour la radioastronomie a été montrée. Cette thèse se concentre sur la méthodologie de la reconstruction de données à l’Acquisition Comprimée Multicanaux et son application en radioastronomie. Par exemple, les transitoires radios sont un domaine de recherche actif en radioastronomie, mais leur détection est un problème difficile en raison de la faible résolution angulaire et des observations à faible rapport signal-sur-bruit. Pour résoudre ce problème, nous avons exploité la parcimonie de l’information temporelle des transitoires radios et nous avons proposé une méthode de reconstruction spatio-temporelle pour détecter efficacement les sources radios. Les expériences ont démontré la force de cette méthode de reconstruction en comparaison avec les méthodes de l’état de l’art. Une deuxième application concerne l’imagerie interférométrie radio à multi-longueur d’onde dans lesquelles les données sont dégradées différemment en termes de longueur d’onde car la réponse instrumentale varie en fonction de la longueur d’onde. Basé sur le modèle de mélange de sources, un nouveau modèle est proposé pour effectuer de manière jointe une Séparation de Sources en Aveugle et une déconvolution (SSAD). Le problème SSAD n’est pas seulement non-convexe mais aussi mal conditionné en raison des noyaux de convolution. Notre méthode proposée DecGMCA, qui utilise un a priori de parcimonie et emploie un scénario de moindre carré alternatif, est un algorithme efficace pour aborder simultanément les problèmes de déconvolution et de SSA. Les expériences ont démontré que notre approche jointe permet d’obtenir de meilleurs résultats comparée à une analyse standard consistant en une application séquentielle d’une déconvolution suivie d’une séparation de sources en aveugle. / The new generation of radio interferometer instruments, such as LOFAR and SKA, will allow us to build radio images with very high angular resolution and sensitivity. One of the major problems in interferometry imaging is that it involves an ill-posed inverse problem, because only a few Fourier components (visibility points) can be acquired by a radio interferometer. Compressed Sensing (CS) theory is a paradigm to solve many underdetermined inverse problems and has shown its strength in radio astronomy. This thesis focuses on the methodology of Multichannel Compressed Sensing data reconstruction and its application in radio astronomy. For instance, radio transients are an active research field in radio astronomy but their detection is a challenging problem because of low angular resolution and low signal-to-noise observations. To address this issue, we investigated the sparsity of temporal information of radio transients and proposed a spatial-temporal sparse reconstruction method to efficiently detect radio sources. Experiments have shown the strength of this sparse recovery method compared to the state-of-the-art methods. A second application is concerned with multi-wavelength radio interferometry imaging in which the data are degraded differently in terms of wavelength due to the wavelength-dependent varying instrumental beam. Based on a source mixture model, a novel Deconvolution Blind Source Separation (DBSS) model is proposed. The DBSS problem is not only non-convex but also ill conditioned due to convolution kernels. Our proposed DecGMCA method, which benefits from a sparsity prior and leverages an alternating projected least squares, is an efficient algorithm to tackle simultaneously the deconvolution and BSS problems. Experiments have shown that taking into account joint deconvolution and BSS gives much better results than applying sequential deconvolution and BSS.
69

Vícekanálové metody zvýrazňování řeči / Multi-channel Methods of Speech Enhancement

Zitka, Adam January 2008 (has links)
This thesis deals with multi-channel methods of speech enhancement. Multichannel methods of speech enhancement use a few microphones for recording signals. From mixtures of signals, for example, individual speakers can be separated, noise should be reduced etc. with using neural networks. The task of separating speakers is known as a cocktail-party effect. The main method of solving this problem is called independent component analysis. At first there are described its theoretical foundation and presented conditions and requirements for its application. Methods of ICA try to separate the mixtures with help of searching the minimal gaussian properties of signals. For the analysis of independent components are used different mathematical properties of signals such as kurtosis and entropy. Signals, which were mixed artificially on a computer, can be relatively well separated using, for example, FastICA algorithm or ICA gradient ascent. However, difficult is situation, if we want to separate the signals created in the real recording enviroment, because the separation of speech people speaking at the same time in the real environment affects other various factors such as acoustic properties of the room, noise, delays, reflections from the walls, the position or the type of microphones, etc. Work presents aproach of independent component analysis in the frequency domain, which can successfully separate also recordings made in the real environment.
70

Parcimonie, diversité morphologique et séparation robuste de sources / Sparse modeling, morphological diversity and robust source separation

Chenot, Cécile 29 September 2017 (has links)
Cette thèse porte sur le problème de Séparation Aveugle de Sources (SAS) en présence de données aberrantes. La plupart des méthodes de SAS sont faussées par la présence de déviations structurées par rapport au modèle de mélange linéaire classique: des évènements physiques inattendus ou des dysfonctionnements de capteurs en sont des exemples fréquents.Nous proposons un nouveau modèle prenant en compte explicitement les données aberrantes. Le problème de séparation en résultant, mal posé, est adressé grâce à la parcimonie. L'utilisation de cette dernière est particulièrement intéressante en SAS robuste car elle permet simultanément de démélanger les sources et de séparer les différentes contributions. Ces travaux sont étendus pour l'estimation de variabilité spectrale pour l'imagerie hyperspectrale terrestre.Des comparaisons avec des méthodes de l'état-de-l'art montrent la robustesse et la fiabilité des algorithmes associés pour un large éventail de configurations, incluant le cas déterminé. / This manuscript addresses the Blind Source Separation (BSS) problem in the presence of outliers. Most BSS techniques are hampered by the presence of structured deviations from the standard linear mixing model, such as unexpected physical events or malfunctions of sensors. We propose a new data model taking explicitly into account the deviations. The resulting joint estimation of the components is an ill-posed problem, tackled using sparse modeling. The latter is particularly efficient for solving robust BSS since it allows for a robust unmixing of the sources jointly with a precise separation of the components. These works are then extended for the estimation of spectral variability in the framework of terrestrial hyperspectral imaging. Numerical experiments highlight the robustness and reliability of the proposed algorithms in a wide range of settings, including the full-rank regime.

Page generated in 0.1433 seconds