• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 11
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 95
  • 95
  • 52
  • 49
  • 48
  • 21
  • 20
  • 18
  • 17
  • 15
  • 13
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Universal physical access control system (UPACS)

Unknown Date (has links)
This research addresses the need for increased interoperability between the varied access control systems in use today, and for a secure means of providing access to remote physical devices over untrusted networks. The Universal Physical Access Control System (UPACS) is an encryption-enabled security protocol that provides a standard customizable device control mechanism that can be used to control the behavior of a wide variety of physical devices, and provide users the ability to securely access those physical devices over untrusted networks. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
52

Reliable and energy efficient scheduling protocols for Wireless Body Area Networks (WBAN)

Salayma, Marwa January 2018 (has links)
Wireless Body Area Network (WBAN) facilitates efficient and cost-effective e-health care and well-being applications. The WBAN has unique challenges and features compared to other Wireless Sensor Networks (WSN). In addition to battery power consumption, the vulnerability and the unpredicted channel behavior of the Medium Access Control (MAC) layer make channel access a serious problem. MAC protocols based on Time Division Multiple Access (TDMA) can improve the reliability and efficiency of WBAN. However, conventional static TDMA techniques adopted by IEEE 802.15.4 and IEEE 802.15.6 do not sufficiently consider the channel status or the buffer requirements of the nodes within heterogeneous contexts. Although there are some solutions that have been proposed to alleviate the effect of the deep fade in WBAN channel by adopting dynamic slot allocation, these solutions still suffer from some reliability and energy efficiency issues and they do not avoid channel deep fading. This thesis presents novel and generic TDMA based techniques to improve WBAN reliability and energy efficiency. The proposed techniques synchronise nodes adaptively whilst tackling their channel and buffer status in normal and emergency contexts. Extensive simulation experiments using various traffic rates and time slot lengths demonstrate that the proposed techniques improve the reliability and the energy efficiency compared to the de-facto standards of WBAN, i.e. the IEEE 802.15.4 and the IEEE 802.15.6. In normal situations, the proposed techniques reduce packet loss up to 61% and 68% compared to the IEEE 802.15.4 and IEEE 802.15.6 respectively. They also reduce energy consumption up to 7.3%. In emergencies, however, the proposed techniques reduce packets loss up to 63.4% and 90% with respect to their counterparts in IEEE 802.15.4 and 802.15.6. The achieved results confirm the significant enhancements made by the developed scheduling techniques to promote the reliability and energy efficiency of WBAN, opening up promising doors towards new horizons and applications.
53

Traitement parcimonieux de signaux biologiques / Sparse processing of biological signals

Chollet, Paul 24 November 2017 (has links)
Les réseaux de capteurs corporels représentent un enjeu sociétal important en permettant des soins de meilleure qualité avec un coût réduit. Ces derniers sont utilisés pour détecter des anomalies dès leur apparition et ainsi intervenir au plus vite. Les capteurs sont soumis à de nombreuses contraintes de fiabilité, robustesse, taille et consommation. Dans cette thèse, les différentes opérations réalisées par les réseaux de capteurs corporels sont analysées. La consommation de chacune d'elles est évaluée afin de guider les axes de recherche pour améliorer l'autonomie énergétique des capteurs. Un capteur pour la détection d'arythmie sur des signaux cardiaques est proposé. Il intègre un traitement du signal via l'utilisation d'un réseau de neurone à cliques. Le système proposé est simulé et offre une exactitude de classification de 95 % pour la détection de trois types d'arythmie. Le prototypage du système via la fabrication d'un circuit mixte analogique/numérique en CMOS 65 nm montre une consommation du capteur de l'ordre de 1,4 μJ. Pour réduire encore plus l'énergie, une nouvelle méthode d'acquisition est utilisée. Une architecture de convertisseur est proposée pour l'acquisition et le traitement de signaux cardiaques. Cette dernière laisse espérer une consommation de l'ordre de 1,18 nJ pour acquérir les paramètres tout en offrant une exactitude de classification proche de 98 %. Cette étude permet d'ouvrir la voie vers la mise en place de capteurs très basse consommation pouvant durer toute une vie avec une simple pile. / Body area sensor networks gained great focused through the promiseof better quality and cheaper medical care system. They are used todetect anomalies and treat them as soon as they arise. Sensors are under heavy constraints such as reliability, sturdiness, size and power consumption. This thesis analyzes the operations perform by a body area sensor network. The different energy requirements are evaluated in order to choose the focus of the research to improve the battery life of the sensors. A sensor for arrhythmia detection is proposed. It includes some signal processing through a clique-based neural network. The system simulations allow a classification between three types of arrhythmia with 95 % accuracy. The prototype, based on a 65 nm CMOS mixed signal circuit, requires only 1.4 μJ. To further reduce energy consumption, a new sensing method is used. A converter architecture is proposed for heart beat acquisition. Simulations and estimation show a 1.18 nJ energy requirement for parameter acquisition while offering 98 % classification accuracy. This work leads the way to the development of low energy sensor with a lifetime battery life.
54

Contributions pour la localisation basée sur les réseaux corporels sans fil / Contributions to cooperative localization techniques within mobile wireless bady area networks

Hamie, Jihad 25 November 2013 (has links)
Dans le cadre de cette thèse, on se proposait de développer de nouveaux mécanismes de radiolocalisation, permettant de positionner les nœuds de réseaux corporels sans-fil (WBAN) mobiles, en exploitant de manière opportuniste des liens radio coopératifs bas débit à l'échelle d'un même corps (i.e. coopération intra-WBAN), entre réseaux distincts (i.e. coopération inter-WBAN), et/ou vis-à-vis de l'infrastructure environnante. Ces nouvelles fonctions coopératives présentent un intérêt pour des applications telles que la navigation de groupe ou la capture de mouvement à large échelle. Ce sujet d'étude, par essence multidisciplinaire, a permis d'aborder des questions de recherche variées, humine-biomécanique et de ayant trait à la modélisation physique (e.g. modélisation spatio-temporelle des métriques de radiolocalisation en situation de mobilité, modélisation de la mobilité groupe...), au développement d'algorithmes adaptés aux observables disponibles (e.g. algorithmes de positionnement coopératifs et distribués, sélection et ordonnancement des liens/mesures entre les nœuds...), aux mécanismes d'accès et de mise en réseau (i.e. en support aux mesures coopératives et au positionnement itératif). Les bénéfices et les limites de certaines de ces fonctions ont été en partie éprouvés expérimentalement, au moyen de plateformes radio réelles. Les différents développements réalisés tenaient compte, autant que possible, des contraintes liées aux standards de communication WBAN émergeants (e.g. Impulse Radio - Ultra Wideband (IR-UWB) IEEE 802.15.6), par exemple en termes de bande fréquentielle ou de taux d'erreur. / The PhD investigations aim at exploring new WBAN cooperative localization mechanisms, which could benefit jointly from on-body links, body-to-body links between distinct mobile users or off-body links with respect to the infrastructure. Following a multidisciplinary approach, we have thus addressed theoretical questions related to physical modeling or to algorithmic and cross-layer design. A few more practical aspects have also been dealt with. More specifically, based on WBAN channel measurements, single-link ranging error models are first discussed for more realistic performance assessment. Then a Constrained Distributed Weighted Multi-Dimensional Scaling (CDWMDS) positioning algorithm is put forward for relative MoCap purposes, coping with on-body nodes' asynchronism to reduce system latency and exploiting the presence of constant-length radio links for better accuracy. Subsequently we consider extending this algorithm for larger-scale asbolute MoCap applications within a 2-step localization approach that incorporates additional off-body links in a heterogeneous WBAN framework. Then, both individual and collective kinds of navigation are addressed. In both MoCap and navigation scenarios, low-complexity solutions exploiting on-body deployment diversity enable to combat error propagation and strong range biases due to body shadowing, relying on on-body nodes' dispersion or graph neighborhood to approximate the corrupted distances. Finally, experiments based on real IR-UWB radio platforms validate in part the previous proposals, while showing their practical limitations.
55

Orthogonal Codes for CDMA-based Asynchronous Medical Wireless Body Area Networks (WBANs)

Tawfiq, Ali 27 November 2012 (has links)
The presented work considers a CDMA-based Wireless Body Area Network (WBAN) where multiple biosensors communicate simultaneously to a central node in an asynchronous fashion. The asynchronous nature of the WBAN introduces Multiple Access Interference (MAI). To combat this problem, presented is a methodology that uses a set of cyclically orthogonal spreading codes extracted from the Walsh-Hadamard matrix. When using the Cyclic Orthogonal Walsh-Hadamard Codes (COWHC) as spreading codes in the CDMA-based WBAN, the cyclic orthogonality property helps mitigate MAI amongst the on-body sensors. Presented is an ideal communication system that is most effective at mitigating MAI in proactive WBANs. The work illustrates the system optimality and effectiveness at mitigating MAI by studying the sensitivity to packet-loss through simulating the link Bit Error Rate (BER) performance. It is shown that the proposed design with COWHC, a Rayleigh flat-fading channel, BPSK modulation and a conventional receiver produce optimum MAI mitigation.
56

Orthogonal Codes for CDMA-based Asynchronous Medical Wireless Body Area Networks (WBANs)

Tawfiq, Ali 27 November 2012 (has links)
The presented work considers a CDMA-based Wireless Body Area Network (WBAN) where multiple biosensors communicate simultaneously to a central node in an asynchronous fashion. The asynchronous nature of the WBAN introduces Multiple Access Interference (MAI). To combat this problem, presented is a methodology that uses a set of cyclically orthogonal spreading codes extracted from the Walsh-Hadamard matrix. When using the Cyclic Orthogonal Walsh-Hadamard Codes (COWHC) as spreading codes in the CDMA-based WBAN, the cyclic orthogonality property helps mitigate MAI amongst the on-body sensors. Presented is an ideal communication system that is most effective at mitigating MAI in proactive WBANs. The work illustrates the system optimality and effectiveness at mitigating MAI by studying the sensitivity to packet-loss through simulating the link Bit Error Rate (BER) performance. It is shown that the proposed design with COWHC, a Rayleigh flat-fading channel, BPSK modulation and a conventional receiver produce optimum MAI mitigation.
57

Time Synchronization In ANT Wireless Low Power Sensor Network

Sheriff, Nathirulla January 2011 (has links)
Short range wireless data communication networks that are used for sport and health care are sometimes called Wireless Body Area Networks (WBANs) and they are located more or less on a person. Sole Integrated Gait Sensor (SIGS) is a research project in WBAN, where wireless pressure sensors are placed like soles in the shoes of persons with different kinds of deceases. The sensors can measure the pressure of the foot relative to the shoe i.e. the load of the two legs is measured. This information can be useful e.g. to not over or under load a leg after joint replacement or as a bio feedback system to help e.g. post stroke patients to avoid falling. The SIGS uses the ANT Protocol and radio specification. ANT uses the 2.4 GHz ISM band and TDMA is used to share a single frequency. The scheduling of time slots is adaptive isochronous co-existence i.e. the scheduling is not static and each transmitter sends periodically but checks for interference with other traffic on the radio channel. In this unidirectional system sole sensors are masters (transmitters) and the WBAN server is the slave in ANT sense. The message rate is chosen as 8 Hz which is suitable for low power consumption. Hence in the SIGS system, it is necessary to synchronize the left and the right foot sensors because of low message rate. In our thesis, we found a method and developed a prototype to receive the time synchronized data in WBAN server from ANT wireless sensor nodes in SIGS system. For this thesis work, a hardware prototype design was developed. The USB and USART communication protocols were also implemented in the hardware prototype. The suitable method for time synchronization was implemented on the hardware prototype. The implemented method receives the sensor data, checks for the correct stream of data; add timestamp to the sensor data and transmit the data to the Linux WBAN server. The time slots allocation in the ANT protocol was found. Alternative solution for the time synchronization in ANT protocol was also provided. The whole SIGS system was tested for its full functionality. The experiments and analysis which we performed were successful and the results obtained provided good time synchronization protocol for ANT low power wireless sensor network and for Wireless Bio-feedback system.
58

Secure collection and data management system for WSNs

Drira, Wassim 10 December 2012 (has links) (PDF)
Nowadays, each user or organization is already connected to a large number of sensor nodes which generate a substantial amount of data, making their management not an obvious issue. In addition, these data can be confidential. For these reasons, developing a secure system managing the data from heterogeneous sensor nodes is a real need. In the first part, we developed a composite-based middleware for wireless sensor networks to communicate with the physical sensors for storing, processing, indexing, analyzing and generating alerts on those sensors data. Each composite is connected to a physical node or used to aggregate data from different composites. Each physical node communicating with the middleware is setup as a composite. The middleware has been used in the context of the European project Mobesens in order to manage data from a sensor network for monitoring water quality. In the second part of the thesis, we proposed a new hybrid authentication and key establishment scheme between senor nodes (SN), gateways (MN) and the middleware (SS). It is based on two protocols. The first protocol intent is the mutual authentication between SS and MN, on providing an asymmetric pair of keys for MN, and on establishing a pairwise key between them. The second protocol aims at authenticating them, and establishing a group key and pairwise keys between SN and the two others. The middleware has been generalized in the third part in order to provide a private space for multi-organization or -user to manage his sensors data using cloud computing. Next, we expanded the composite with gadgets to share securely sensor data in order to provide a secure social sensor network
59

Efficient Wireless Communication in Healthcare Systems; Design and Performance Evaluation

Rashwand, Saeed January 2012 (has links)
Increasing number of ageing population and people who need continuous health monitoring and rising the costs of health care have triggered the concept of the novel wireless technology-driven human body monitoring. Human body monitoring can be performed using a network of small and intelligent wireless medical sensors which may be attached to the body surface or implanted into the tissues. It enables carers to predict, diagnose, and react to adverse events earlier than ever. The concept of Wireless Body Area Network (WBAN) was introduced to fully exploit the benefits of wireless technologies in telemedicine and m-health. The main focus of this research is the design and performance evaluation of strategies and architectures that would allow seamless and efficient interconnection of patient’s body area network and the stationary (e.g., hospital room or ward) wireless networks. I first introduce the architecture of a healthcare system which bridges WBANs and Wireless Local Area Networks (WLANs). I adopt IEEE 802.15.6 standard for the patient’s body network because it is specifically designed for WBANs. Since IEEE 802.15.6 has strict Quality of Service (QoS) and priorities to transfer the medical data to the medical server a QoS-enabled WLAN for the next hop is needed to preserve the end-to-end QoS. IEEE 802.11e standard is selected for the WLAN in the hospital room or ward because it provides prioritization for the stations in the network. I investigate in detail the requirements posed by different healthcare parameters and to analyze the performance of various alternative interconnection strategies, using the rigorous mathematical apparatus of Queuing Theory and Probabilistic Analysis; these results are independently validated through discrete event simulation models. This thesis has three main parts; performance evaluation and MAC parameters settings of IEEE 802.11e Enhanced Distributed Channel Access (EDCA), performance evaluation and tuning the MAC parameters of IEEE 802.15.6, and designing a seamless and efficient interconnection strategy which bridges IEEE 802.11e EDCA and IEEE 802.15.6 standards for a healthcare system.
60

Dielectric Resonator Antennas (DRA) for satellite and body area network applications

Alam, Muhammad Faiz, Alam, Muhammad Faiz 02 July 2012 (has links) (PDF)
Technologies such as direct broad cast satellite system (DBSS), Geosynchronous Earth Orbit (GEO) and Low Earth Orbit (LEO) satellite communications , global positioning system (GPS), high accuracy airborne navigation system and a large variety of radar systems demand for high level of antenna performance. Similar is the requirement for upcoming land based wireless systems such as cellular and indoor communication systems that is needed some more specific and additional features added to the antenna to compensate for the deficiencies encountered in system's performance. Though metallic antennas are capable enough to fulfil all the operational requirements, however at very high frequencies and under hostile temperature conditions they are constrained to face certain limitations. To avoid these constraints the performance of Dielectric Resonator Antennas (DRAs) is evaluated and their new applications are proposed. In the thesis, two types of antenna applications are sought :-First is for tracking and satellite applications that needs a larger aperture coverage in elevation plane. This coverage is realized with a good CP purity by proposing two ports dual linearly polarized DRA working at X-band. The DRA is excited by two orthogonal H-shaped aperture slots yielding two orthogonal polarizations in the broadside direction. A common impedance bandwidth of 5.9% and input port isolation of -35 dB are obtained. The broadside radiation patterns are found to be highly symmetric and stable with cross polarization levels -15dB or better over the entire matching frequency band. The maximum measured gain is found to be 2.5dBi at 8.4 GHz.- The 2nd type of antenna is a dual pattern diversity antenna to be used in the Body Area Network (BAN) context. This antenna combines a slot loop and DRA yielding broadside and end-fire radiation patterns respectively. Based upon the feeding techniques, the DG antenna is further divided into two categories one with planar feeds and the other with non-planar feeds (slot loop excited by planar CPW but DRA excited by vertical monopole) .Both types are successfully designed and measured upon body when configured into different propagation scenarios. The non-planar feeds antenna allows wider common impedance bandwidths than the planar feeds (4.95% vs 1.5%).In both cases, a maximum value of DG=9.5dB was achieved when diversity performance tests were carried out in rich fading environments. This value is close to the one (10 dB) theoretically reached in a pure Rayleigh environment and was obtained with efficiencies of 70% and 85% for the slot loop and the DRA respectively. Therefore, we conclude that these antennas could be used on the shoulders or the chest of professional clothes (firemen, policemen, soldier) where full planar integration is not a key issue but where the communication must be efficient in harsh environments and for various gestures, positions and scenarios

Page generated in 0.0439 seconds