Spelling suggestions: "subject:"brain mapping."" "subject:"grain mapping.""
51 |
Elektroencefalografické koreláty prolongovaného pohybového výkonu u profesionálních hudebníků / Electroencephalographic correlates of prolonged locomotor performance of professional musiciansBrabencová, Zuzana January 2014 (has links)
Title: Electroencephalographic correlates of prolonged locomotor performance of professional musicians Summary: The aim of this work is to verify the presence of alpha activity in the electroencephalographic recording during prolonged (20 minute) violin play and compare its morphological and topical parameters with the native EEG record before and after the performance. Research sample consisted of five professional violinist in the age range of 25- 60 years. The results showed the occurrence of alpha activity for four of five probands, in one case with a very low incidence. There has been also demonstrated changes in the distribution of alpha activity from parietooccipital areas before the preformance to central areas during the play and immediately after finishing. All probands showed increased amplitude of the alpha activity immediately after finishing. The obtained results confirm the changes of morphology and the changes of topic alpha activity during cognitive activities and at the onset of central fatigue during physical aktivity described in literature. These changes were demonstrated by increasing the amplitude of alpha activity and the shift from parietooccipital areas to central areas. Keywords: EEG, alpha aktivity, violin performance, brain mapping
|
52 |
Large-Scale Cortical Functional Connectivity Underlying Visuospatial AttentionUnknown Date (has links)
The endogenous, or voluntary, control of visuospatial attention relies upon
interactions within a frontoparietal dorsal attention network (DAN) and this network’s
top-down influence on visual occipital cortex (VOC). While these interactions have been
shown to occur during attention tasks, they are also known to occur to some extent at rest,
but the degree to which task-related interactions reflect either modulation or
reorganization of such ongoing intrinsic interactions is poorly understood. In addition, it
is known that in spatial neglect—a syndrome following unilateral brain lesions in which
patients fail to attend to the contralesional side of space—symptom severity covaries with
disruptions to intrinsic interhemispheric interactions between left and right homologous
regions of the DAN; however, similar covariance with disruptions to intrahemispheric
interactions within the DAN, and between the DAN and VOC, has not been demonstrated.
These issues are addressed herein via the measurement of both undirected and directed
functional connectivity (UFC, DFC) within the DAN and between the DAN and VOC. UFC and DFC were derived from correlations of, and multivariate vector autoregressive
modeling of, fMRI BOLD time-series, respectively. Time-series were recorded from
individuals performing an anticipatory visuospatial attention task and individuals at rest,
as well as from stroke patients either with or without neglect and age-matched healthy
controls. With regard to the first issue, the results show that relative to rest, top-down
DAN-to-VOC influence and within-DAN coupling are elevated during task performance,
but also that intrinsic connectivity patterns are largely preserved during the task. With
regard to the second issue, results show that interhemispheric imbalances of
intrahemispheric UFC and DFC both within the DAN and between the DAN and VOC
strongly correlate with neglect severity, and may co-occur with functional decoupling of
the hemispheres. This work thus demonstrates that the intrinsic functional integrity of the
DAN and its relationship to VOC is crucial for the endogenous control of visuospatial
attention during tasks, and that the compromise of this integrity due to stroke likely plays
a role in producing spatial neglect. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
|
53 |
The neural correlates of endogenously cued covert visuospatial attentional shifting in the cue-target interval: an electroencephalographic studyUnknown Date (has links)
This study investigated electroencephalographic differences related to cue (central left- or right-directed arrows) in a covert endogenous visual spatial attention task patterned after that of Hopf and Mangun (2000). This was done with the intent of defining the timing of components in relation to cognitive processes within the cue-target interval. Multiple techniques were employed to do this. Event-related potentials (ERPs) were examined using Independent Component Analysis. This revealed a significant N1, between 100:200 ms post-cue, greater contralateral to the cue. Difference wave ERPs, left minus right cue-locked data, divulged significant early directing attention negativity (EDAN) at 200:400 ms post-cue in the right posterior which reversed polarity in the left posterior. Temporal spectral evolution (TSE) analysis of the alpha band revealed three stages, (1) high bilateral alpha precue to 120 ms post-cue, (2) an event related desynchronization (ERD) from approximately 120 ms: 500 ms post-cue, and (3) an event related synchronization (ERS) rebound, 500: 900 ms post-cue, where alpha amplitude, a measure of activity, was highest contralateral to the ignored hemifield and lower contralateral to the attended hemifield. Using a combination of all of these components and scientific literature in this field, it is possible to plot out the time course of the cognitive events and their neural correlates. / by Edward Justin Modestino. / Vita. / Thesis (Ph.D.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
|
54 |
Spatiotemporal brain dynamics of the resting stateUnknown Date (has links)
Traditionally brain function is studied through measuring physiological responses in controlled sensory, motor, and cognitive paradigms. However, even at rest, in the absence of overt goal-directed behavior, collections of cortical regions consistently show temporally coherent activity. In humans, these resting state networks have been shown to greatly overlap with functional architectures present during consciously directed activity, which motivates the interpretation of rest activity as day dreaming, free association, stream of consciousness, and inner rehearsal. In monkeys, it has been shown though that similar coherent fluctuations are present during deep anesthesia when there is no consciousness. These coherent fluctuations have also been characterized on multiple temporal scales ranging from the fast frequency regimes, 1-100 Hz, commonly observed in EEG and MEG recordings, to the ultra-slow regimes, < 0.1 Hz, observed in the Blood Oxygen Level Dependent (BOLD) signal of functi onal magnetic resonance imaging (fMRI). However, the mechanism for their genesis and the origin of the ultra-slow frequency oscillations has not been well understood. Here, we show that comparable resting state networks emerge from a stability analysis of the network dynamics using biologically realistic primate brain connectivity, although anatomical information alone does not identify the network. We specifically demonstrate that noise and time delays via propagation along connecting fibres are essential for the emergence of the coherent fluctuations of the default network. The combination of anatomical structure and time delays creates a spacetime structure in which the neural noise enables the brain to explore various functional configurations representing its dynamic repertoire. / Using a simplified network model comprised of 3 nodes governed by the dynamics of FitzHugh-Nagumo (FHN) oscillators, we systematically study the role of time delay and coupling strength in the Using a simplified network model comprised of 3 nodes governed by the dynamics of FitzHugh-Nagumo (FHN) oscillators, we systematically study the role of time delay and coupling strength in the generation o f the slow coherent fluctuations. We find that these fluctuations in the BOLD signal are significantly correlated with the level of neural synchrony implicating that transient interareal synchronizations are the mechanism causing the emergence of the ultra slow coherent fluctuations in the BOLD signal. / by Young-Ah Rho. / Thesis (Ph.D.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
|
55 |
The Role of Dorsal Anterior Cingulate Cortex in the Motor ControlUnknown Date (has links)
We sought to better understand human motor control by investigating functional interactions between the Supplementary Motor Area (SMA), dorsal Anterior Cingulate Cortex (dACC), and primary motor cortex (M1) in healthy adolescent participants performing visually coordinated unimanual finger-movement and n-back working memory tasks. We discovered modulation of the SMA by the dACC by analysis of fMRI BOLD time series recorded from the three ROIs (SMA, dACC, and M1) in each participant. Two measures of functional interaction were used: undirected functional connectivity was measured using the Pearson product-moment correlation coefficient (PMCC), and directed functional connectivity was measured from linear autoregressive (AR) models. In the first project, task-specific modulation of the SMA by the dACC was discovered while subjects performed a coordinated unimanual finger-movement task, in which the finger movement was synchronized with an exogenous visual stimulus. In the second project, modulation of the SMA by the dACC was found to be significantly greater in the finger coordination task than in an n-back working memory, in which the same finger movement signified a motor response indicating a 0-back or 2-back working memory match. We thus demonstrated in the first study that the dACC sends task-specific directed signals to the supplementary motor area, suggesting a role for the dACC in top-down motor control. Finally, the second study revealed that these signals were significantly greater in the coordinated motor task than in the n-back working memory task, suggesting that the modulation of the SMA by the dACC was associated with sustained, continuous motor production and/or motor expectation, rather than with the motor movement itself. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
|
56 |
Brain Mapping of the Latency Epochs in a McGurk Effect Paradigm in Music Performance and Visual Arts MajorsNordstrom, Lauren Donelle 01 March 2015 (has links)
The McGurk effect is an illusion that occurs when an auditory /ba/ is combined with a visual /ga/. The two stimuli fuse together which leads to the perception of /da/, a sound in between /ba/ and /ga/. The purpose of this study was to determine whether music performance and visual arts majors process mismatched auditory and visual stimuli, like the McGurk effect, differently. Nine syllable pairs were presented to 10 native English speakers (5 music performance majors and 5 visual arts majors between the ages of 18 and 28 years) in a four-forced-choice response paradigm. Data from event-related potentials were recorded for each participant. Results demonstrate that there are differences in the electrophysiological responses to viewing the mismatched syllable pairs. The /ga/ phoneme in the music performance group produced more differences while the /da/ phoneme produced more differences in the visual arts group. The McGurk effect is processed differently in the music performance majors and the visual arts majors; processing begins in the earliest latency epoch in the visual arts group but in the late latency epoch in the music performance group. These results imply that the music performance group has a more complex decoding system than the visual arts group. It also may suggest that the visual arts group is better able to integrate the visual and auditory information to resolve the conflict when mismatched signals are presented.
|
57 |
Spatiotemporal dynamics of low frequency fluctuations in bold fMRIMajeed, Waqas 27 August 2010 (has links)
Traditional fMRI utilizes blood oxygenation level dependent (BOLD) contrast to map brain activity. BOLD signal is sensitive to the hemodynamic changes associated with brain activity, and gives an indirect measure of brain activity. Low frequency fluctuations (LFFs) have been observed in the BOLD signal even in the absence of any anesthetic agent, and the correlations between the fluctuations from different brain regions has been used to map functional connectivity in the brain. Most studies involving spontaneous fluctuations in the BOLD signal extract connectivity patterns that show relationships between brain areas that are maintained over the length of the scanning session. The research presented in this document investigates the spatiotemporal dynamics of the BOLD fluctuations to identify common spatiotemporal patterns within a scan. First, the presence of a visually detectable spatiotemporal propagation pattern is demonstrated by utilizing single-slice data with high spatial and temporal resolution. The pattern consists of lateral-medial propagation of BOLD signal, demonstrating the presence of time-varying features in spontaneous BOLD fluctuations. Further, a novel pattern finding algorithm is developed for detecting repeated spatiotemporal patterns in BOLD fMRI data. The algorithm is applied to high temporal resolution T2*-weighted multislice images obtained from rats and humans in the absence of any task or stimulation. In rats, the primary pattern consists of waves of high signal intensity, propagating in a lateral-medial direction across the cortex, replicating the results obtained using visual observation. In humans, the most common spatiotemporal pattern consisted of an alteration between activation of areas comprising the "default-mode" (e.g., posterior cingulate and anterior medial prefrontal cortices) and the "task-positive" (e.g., superior parietal and premotor cortices) networks. Signal propagation from focal starting points is also observed. The pattern finding algorithm is shown to be reasonably insensitive to the variation in user-defined parameters, and the results are consistent within and between subjects. This novel approach for probing the spontaneous network activity of the brain has implications for the interpretation of conventional functional connectivity studies, and may increase the amount of information that can be obtained from neuroimaging data.
|
58 |
Resting-state hyperconnectivity of the anticorrelated intrinsic networks in schizophrenic patients and their unaffected siblingsKaneko, Yoshio A 22 September 2010 (has links)
Abnormal connectivity of the intrinsic anticorrelated networks, the task-negative network (TNN) and task-positive network (TPN), is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings offer an opportunity to further understand illness susceptibility and pathophysiology. We hypothesized that schizophrenic patients would demonstrate hyperconnectivity in the intrinsic networks and that similar, but less pronounced, hyperconnectivity would be evident in the networks of the unaffected siblings. Resting-state functional magnetic resonance images were obtained from schizophrenic patients (n=25), their unaffected siblings (n=25), and healthy controls (n=25). The posterior cingulate cortex/precuneus (PCC/PCu) and right dorsolateral prefrontal cortex (DLPFC) were used as seed regions to identify the TNN and TPN. Interregional connectivity strengths were analyzed using overlapped intrinsic networks composed of regions common to the intrinsic networks of the three subject groups. In the TNN, schizophrenic patients alone demonstrated hyperconnectivity between the PCC/PCu and left inferior temporal gyrus and between the ventral medial prefrontal cortex and the right lateral parietal cortex. Both schizophrenic patients and their unaffected siblings showed increased connectivity in the TNN between the bilateral inferior temporal gyri. In the TPN, schizophrenic patients showed hyperconnectivity between the left DLPFC and right inferior frontal gyrus relative to unaffected siblings, though this trend only approached statistical significance in comparison to healthy controls. Resting-state hyperconnectivity of the intrinsic networks may underlie the pathophysiology of schizophrenia by disrupting network coordination. Similar, though milder, hyperconnectivity in unaffected siblings of schizophrenic patients may contribute to their cognitive deficits and increased risk to develop schizophrenia.
|
59 |
Mapping of cortical motor reorganization in spinal cord injuryRozhkov, Leonid I. January 2001 (has links) (PDF)
Thesis (M.S.)--University of Tennessee, Memphis, 2001.
|
60 |
The flow brain state of painting and drawing artists.Van Heerden, Ariana. January 2014 (has links)
D. Tech. Fine and Applied Art / The aim of this study was to investigate whether there is an association between art making and the brain state known as flow, a construct defined by Mihaly Csikszentmihalyi. Links were sought between artists' perceived propensity to experience flow and quantified experimental data of the same art-making events. A predominantly psychological theoretical framework had to be created, contextual as well as conceptual, of historical and contemporary leanings that have formulated understandings of creativity and flow. These indicate that flow can trace its origins to concepts of human happiness and excellence, motivation, self-determination and peak experiences. These concepts illustrate that in pursuing intrinsic endeavours such as art making, a person is continuously engaged in reflectivity and deliberation concerning his or her actions and aims, which tend to be self-motivated or autotelic. In this study the autotelic and self-reflecting leanings of art making were found to be germane to flow. A key aspect for understanding the flow experience is Arne Dietrich's hypothesis of transient hypofrontality, described as enabling the temporary suppression of the analytical and meta-conscious capacities of the explicit system. In this study, transient hypofrontality was found to be germane to interpretations of flow and art making.
|
Page generated in 0.0714 seconds