• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Agriculture, Dams, and Weather

Mirghasemi, Seyedeh Soudeh January 2015 (has links)
The first chapter investigates whether construction of the Bureau of Reclamation dams in the early twentieth century raise farm values and increase agricultural output? I construct a new county level panel data set from 1890 to 1920 with information on geography, climate, politics, agriculture, and major dams and then evaluate the effect of the Bureau of Reclamation dams on the value of farms and on crop productivity. Using fixed effect panel estimation, I find that new federal dam construction increased the average value of farm land by approximately 6.4 percent. When I apply an instrument to control for potential endogeneity, the effect of Bureau dams on the farm land value increases in size, although the estimate is no longer statistically significant. When examining the crop output, the only crop for which the dams had effects was alfalfa. In the second chapter I investigate the effect of the geographic, economic and political factors on dam construction at the beginning of the Bureau of Reclamation's operation in the American West. Applying county level data which has been linked from various data sources for the time period of 1900 to 1910, I show that the percentage of votes for Republicans in presidential elections has a significant and positive effect on major dam construction. The last chapter investigates the effect of climate change on US agriculture using county-level data from 1997 to 2007. Compared to previous contributions, we pay particular attention to the spatial heterogeneity across the climate zones and include the presence of extreme weather events. The lack of consideration for both effects may have led previous works to generate biased estimates and incorrect impact forecasts. While current approaches use projected climate variables derived from coarse resolution Global Climate Models (GCMs), we use data at a much finer resolution by relying on dynamically downscaled simulation data. Further, we pay particular attention to the spatial heterogeneity in the impact of climate among the climate zones. Chow-Wald tests indicate the presence of significant heterogeneity across zones in the effects of climate on land values.
2

From Cadillac to Chevy: Environmental Concern, Compromise and the Central Utah Project Completion Act

Eastman, Adam R. 12 July 2006 (has links)
For the past century the federal government has been an active partner with state and local agencies to develop water supplies in the arid West. The last of the large-scale federal reclamation projects to be completed is the Central Utah Project or CUP. The CUP has generated considerable controversy throughout its history. The projects opponents have criticized its expense in terms of both dollars and environmental damage while others have worried about its impact on their water rights. Because of its cost and complexity, planning and construction have spanned decades. This has allowed individuals, organizations, and government agencies opportunity to attempt to influence the plans for the project to address their concerns. During six different periods—the initial congressional debate, project planning, the drafting of environmental impact statement in response to the passage of the National Environmental Policy Act, a lawsuit challenging that document, President Jimmy Carter's reevaluation of the project as a part of the so called "hit list," local reauthorization of the projects repayment contract—these groups worked to alter the Bureau's plans to reduce the environmental, social, and fiscal impacts of the project. Despite multiple attempts, they failed to significantly alter the Bureau's, increase environmental mitigation, or decrease environmental impacts. However, the project's opponents had been given a seventh opportunity. In the late 1980s, after a half century of planning and more than 20 years of construction—the Bureau knew that it could not finish the project without increasing the congressionally authorized spending limits. At a time of waning federal support for such projects, the Democratic leaders of both the House and Senate committees controlling Bureau projects, Senator Bill Bradley (D-NJ) and Congressman George Miller (D-CA), blocked the bill until the Utah delegation addressed the environmental concerns and objections of the project's critics. Determined to keep the project alive, Utah's sole Democrat in Congress, Wayne Owens, acted as a mediator and began to negotiate a compromise. A determined five year effort resulted in a seventy-five page compromise bill that allowed the project to move forward while addressing the major concerns of the project's opponents. Congress passed the Central Utah Project Completion Act in October 1992. The Completion Act cut some of the projects irrigation features, increased the amount of local cost share, shifted planning and oversight for the remaining features from the Bureau to the local water District, and mandated increased environmental mitigation overseen by a new independent federal agency. This thesis identifies the primary concerns of the CUP's critics and traces their attempts to alter the Bureau's plans to address these concerns. Further, it provides a more detailed account of the arduous, but ultimately successful attempt to alter the project during the Congressional debates that created and authorized the Central Utah Project Completion Act. Finally, it assesses the success of the legislation to meet it stated goals during the first decade of implementation.
3

Predicting and Understanding the Presence of Water through Remote Sensing, Machine Learning, and Uncertainty Quantification

Harrington, Matthew R. January 2022 (has links)
In this dissertation I study the benefits that machine learning can bring to problems of Sustainable Development in the field of hydrology. Specifically, in Chapter 1 I investigate how predictable groundwater depletion is across India and to what extent we can learn from the model’s predictions about underlying drivers. In Chapter 2, I joined a competition to predict the amount of water in snow in the western United States using satellite imagery and convolutional neural networks. Lastly, in Chapter 3 I examine how cloud cover impacts the machine learning model’s predictions and explore how cloudiness impacts the successes and limitation of the popular uncertainty quantification method known as Monte Carlo dropout. Food production in many parts of the world relies on groundwater resources. In many regions, groundwater levels are declining due to a combination of anthropogenic abstraction, localized meteorological and geological characteristics, and climate change. Groundwater in India is characteristic of this global trend, with an agricultural sector that is highly dependent on groundwater and increasingly threatened by abstraction far in excess of recharge. The complexity of inputs makes groundwater depletion highly heterogeneous across space and time. However, modeling this heterogeneity has thus far proven difficult. In Chapter 1 using random forest models and high-resolution feature importance methods, we demonstrate a recent shift in the predictors of groundwater depletion in India and show an improved ability to make predictions at the district-level across seasons. We find that, as groundwater depletion begins to accelerate across India, deep-well irrigation use becomes 250% more important from 1996-2014, becoming the most important predictor of depletion in the majority of districts in northern and central India. At the same time, even many of the districts that show gains in groundwater levels show an increasing importance of deep irrigation. Analysis shows widespread decreases in crop yields per unit of irrigation over our time period, suggesting decreasing marginal returns for the largely increasing quantities of groundwater irrigation used. Because anthropogenic and natural drivers of groundwater recharge are highly localized, understanding the relationship between multiple variables across space and time is inferentially challenging, yet extremely important. Our granular, district-focused models of groundwater depletion rates can inform decision-making across diverse hydrological conditions and water use needs across space, time, and groups of constituents. In Chapter 2 I reflect on competing in the U.S. Bureau of Reclamation’s snow water equivalent prediction competition (Snowcast Showdown). This project was a joint effort with Isabella Smythe and we ended the competition scoring roughly 45th out of over 1000 teams on the public leaderboard. In this chapter I outline our approach and discuss the competition format, model building, and examine alternative approaches taken by other competitors. Similarly I consider the success and limitations of our own satellite-based approach and consider future improvements to iterate upon our model. In Chapter 3 I study the black-box deep learning model built on MODIS imagery to estimate snow water equivalent (SWE) made for the competition discussed in Chapter 2. Specifically, I here investigate a major component of uncertainty in my remotely-sensed images: cloud cover which completely disrupts viewing of the surface in the visible spectrum. To understand the impact of cloud-driven missingness, I document how and where clouds occur in the dataset. I then use Monte Carlo dropout - a popular method of quantifying uncertainty in deep learning models - to learn how well the method captures the aleatoric errors unique to remote sensing with cloud cover. Next, I investigate how the underlying filters of the convolutional neural network appear using the guided backprop technique and draw conclusions regarding what features in the images the model was using to make its predictions. Lastly, I investigate what forms of validation best estimated the true generalization error in Chapter 2 using ordinary least squares (OLS) and the elastic-net technique. These three chapters show that machine learning has an important place in the future of hydrology, however the tools that it brings are still difficult to interpret. Moreover, future work is still needed to bring these predictive advancements to scientific standards of understanding. This said, the increases to accuracy brought by the new techniques can currently make a difference to people’s lives who will face greater water scarcity as climate change accelerates.
4

Teaching water conservation to teachers of fourth-sixth grade students

Copp, Kristine E. 01 January 2002 (has links)
This project inserviced teachers for grades fourth through sixth on water conservation activities that they could implement with their students. Project Wet (Water Education for Teachers) was used as the basis for the workshops. All selected activities correlated with the California State Content Standards.
5

An investigation and analysis of the incentives and disincentives for conflict prevention and mitigation in the Bureau of Reclamation's water management

Ogren, Kimberly 11 May 2012 (has links)
This study addresses the question: "What are the incentives and disincentives for conflict prevention and mitigation in the Bureau of Reclamation (Reclamation), and how do they factor into Reclamation's management of water in the western United States?" Incentives and disincentives for conflict prevention (i.e., actions taken to avoid conflict) and mitigation (i.e., actions taken to resolve, manage, or temper a conflictive situation after conflict has occurred) are identified through a survey and focus groups of Reclamation employees. The two dominant disincentives identified are a lack of resources and Reclamation's organizational culture--specifically its reliance on crisis management, water delivery tunnel vision, and being slow to change. Other disincentives include a lack of forward planning, the existence of an acceptable bandwidth or level of conflict, a perception that conflict is unavoidable or entrenched, politics, and limits on acceptable actions associated with the legal authorization of Reclamation projects. Fewer incentives for conflict prevention and mitigation were identified, but include, pressure from higher management, the promotion of collaboration within the Bureau, and a desire to avoid litigation. The institutional analysis and development (IAD) framework offers some insight into how these incentives and disincentives factored into the implementation of the Water2025 Initiative, and Reclamation’s experience with the Middle Rio Grande silvery minnow and the Endangered Species Act. As attributes of the community and rules-in-use, incentives and disincentives such as organizational culture, politics, funding availability, the desire to avoid litigation, the promotion of collaboration within the agency, and a lack of planning effort offer possible explanations of why Reclamation chose to act as it did. / Graduation date: 2012

Page generated in 0.1042 seconds