11 |
Sobre a topologia das singularidades de Morin / On the topology of Morin singularitiesCamila Mariana Ruiz 22 July 2015 (has links)
Neste trabalho, nós abordamos alguns resultados de T. Fukuda e de N. Dutertre e T. Fukui sobre a topologia das singularidades de Morin. Em particular, apresentamos uma nova prova para o Teorema de Dutertre-Fukui [2, Theorem 6.2], para o caso em que N = Rn, usando a Teoria de Morse para variedades com bordo. Baseados nas propriedades de um n-campo de vetores gradiente (∇ f1; : : : ∇fn) de uma aplicação de Morin f : M → Rn, com dim M ≥ n, na segunda parte deste trabalho, nós introduzimos o conceito de n-campos de Morin para n-campos de vetores que não são necessariamente gradientes. Nós também generalizamos o resultado de T. Fukuda [3, Theorem 1], que estabelece uma equivalência módulo 2 entre a característica de Euler de uma variedade diferenciável M e a característica de Euler dos conjuntos singulares de uma aplicação de Morin definida sobre M, para o contexto dos n-campos de Morin. / In this work, we revisit results of T. Fukuda and N. Dutertre and T. Fukui on the topology of Morin maps. In particular, we give a new proof for Dutertre-Fukui\'s Theorem [2, Theorem 6.2] when N = Rn, using Morse Theory for manifolds with boundary. Based on the properties of a gradient n-vector field (∇ f1; : : : ∇ fn) of a Morin map f : M → Rn, where dim M ≥ n, in the second part of this work, we introduce the concept of Morin n-vector field for n-vector fields V = (V1; : : : ; Vn) that are not necessarily gradients. We also generalize the result of T. Fukuda [3, Theorem 1], which establishes a module 2 equivalence between Euler\'s characteristic of a manifold M and Euler\'s characteristic of the singular sets of a Morin map defined on M, to the context of Morin n-vector fields.
|
12 |
Sobre a topologia das singularidades de Morin / On the topology of Morin singularitiesRuiz, Camila Mariana 22 July 2015 (has links)
Neste trabalho, nós abordamos alguns resultados de T. Fukuda e de N. Dutertre e T. Fukui sobre a topologia das singularidades de Morin. Em particular, apresentamos uma nova prova para o Teorema de Dutertre-Fukui [2, Theorem 6.2], para o caso em que N = Rn, usando a Teoria de Morse para variedades com bordo. Baseados nas propriedades de um n-campo de vetores gradiente (∇ f1; : : : ∇fn) de uma aplicação de Morin f : M → Rn, com dim M ≥ n, na segunda parte deste trabalho, nós introduzimos o conceito de n-campos de Morin para n-campos de vetores que não são necessariamente gradientes. Nós também generalizamos o resultado de T. Fukuda [3, Theorem 1], que estabelece uma equivalência módulo 2 entre a característica de Euler de uma variedade diferenciável M e a característica de Euler dos conjuntos singulares de uma aplicação de Morin definida sobre M, para o contexto dos n-campos de Morin. / In this work, we revisit results of T. Fukuda and N. Dutertre and T. Fukui on the topology of Morin maps. In particular, we give a new proof for Dutertre-Fukui\'s Theorem [2, Theorem 6.2] when N = Rn, using Morse Theory for manifolds with boundary. Based on the properties of a gradient n-vector field (∇ f1; : : : ∇ fn) of a Morin map f : M → Rn, where dim M ≥ n, in the second part of this work, we introduce the concept of Morin n-vector field for n-vector fields V = (V1; : : : ; Vn) that are not necessarily gradients. We also generalize the result of T. Fukuda [3, Theorem 1], which establishes a module 2 equivalence between Euler\'s characteristic of a manifold M and Euler\'s characteristic of the singular sets of a Morin map defined on M, to the context of Morin n-vector fields.
|
13 |
Grafos no Ensino BásicoSouza, Marcelo Alves January 2015 (has links)
Orientador: Prof. Dr. Rafael de Mattos Grisi / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2015. / Esse trabalho tem por objetivo apresentar um pouco da teoria de grafos no ensino
Básico. Nele serão abordados conceitos básicos da teoria de grafos com maior
enfoque sobre os grafos eulerianos e semieulerianos e o teorema das quatro cores.
Apresentamos e discutimos também algumas propostas de atividades que foram e
poderão ser desenvolvidas no Ensino Fundamental e Médio, possibilitando ao aluno
o desenvolvimento de algumas habilidades como investigar, analisar, modelar, dentre
outras. A prática dessas atividades foi realizada em uma escola da rede estadual
do Estado de São Paulo com uma turma do 9o ano do Ensino Fundamental e com
uma turma do 3o ano do Ensino Médio, no ano de 2014. / This work aims to present some of the so called graph theory in the Basic education.
It will address the basic concepts of graph theory with greater focus on the Euler graphs and the four color theorem. We also discuss some proposals for activities that have been developed in primary and secondary education, enabling the student to develop some skills to investigate, analyze and model problems using graphs. The practice of these activities took place in a state school of São Paulo with a class of 9th graders of the elementary school and a group of the 3rd year of high school, in 2014.
|
14 |
Sobre o número máximo de retas em superfícies não singular de grau 4 em P3Rêgo, Thiago Luiz de Oliveira do 14 September 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-23T13:08:07Z
No. of bitstreams: 1
arquivototal.pdf: 1209071 bytes, checksum: 1eddcf2f494891c2466f5052f15d1ced (MD5) / Made available in DSpace on 2017-08-23T13:08:07Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1209071 bytes, checksum: 1eddcf2f494891c2466f5052f15d1ced (MD5)
Previous issue date: 2016-09-14 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In 1943 Beniamino Segrebelievedtohaveshownthatthemaximumnumberof lines containedinasmoothquarticsurfacein P3 is 64, ([16]).Butrecently,therewasa majoroverturnonthatthemewhenthemathematiciansRamsandSchuttfoundthat Segre hadmadeamistakeinhisworktoforgetthequartic'sfamily Z , ([14]),which essentiallycorrespondstothosequarticscontainingalinesthatcanbeincidenttomore than 18 lines containedinthesurface.Inthiswork,basedon([14]),weshowthatevery smoothquarticsurface,whichdoesnotbelongtofamily Z containsamaximumof 64 lines. Oneofthemostimportanttoolstoshowthisresult,isthestudyof_brations _l induced byaline l containedonthesurface,andtherelationshipbetweentheEuler characteristicofthebase(P1 in ourcase),the_bersandthesurfaceconcerned. / Em 1943,BeniaminoSegreacreditouterdemonstradoqueonúmeromáximo de retascontidasnumasuperfíciequárticanãosingularem P3 é 64; ([16]). Mas recentemente,houveumareviravoltanessetema,quandoosmatemáticosSªawomir Rams eMatthiasSchüttconstataramqueSegretinhacometidoumerroemseutrabalho ao esquecerasquárticasdafamília Z; ([14]), quecorrespondemessencialmenteas quárticas quepossuemretasquepodemserincidentesamaisde 18 retas contidas na superfície.Nestetrabalho,tendocomobase[14],mostramosquetodaquártica não singular,quenãopertenceafamília Z; contémnomáximo 64 retas. Umadas ferramentasmaisimportantes,paramostraresseresultado,éoestudodas_brações _l induzida porumareta l contidanasuperfície,earelaçãoqueexisteentrea característica deEulerdabase(emnossocaso P1), das_brassingulareseadasuperfície em questão.
|
Page generated in 0.012 seconds