• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 699
  • 519
  • 168
  • 123
  • 77
  • 36
  • 23
  • 16
  • 15
  • 11
  • 10
  • 7
  • 6
  • 6
  • 6
  • Tagged with
  • 1987
  • 480
  • 340
  • 339
  • 210
  • 192
  • 188
  • 164
  • 155
  • 140
  • 128
  • 123
  • 116
  • 108
  • 106
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of nano-silica and organic admixtures on cement hydration : a mechanistic investigation /

Björnström, Joakim. January 2005 (has links)
Thesis (Ph. D.)--Göteborgs universitet, 2005. / Includes bibliographical references.
2

Influence of nano-silica and norganic admixtures of cement hydration : a mechanistic investigation /

Björnström, Joakim. January 2005 (has links)
Univ., Diss.--Göteborg, 2005. / Enth. außerdem 5 Zeitschriftenaufsätze.
3

Derivation of some empirical formulae, showing relation between breaking strength and various functions which enter into cement testing

Terrell, Arthur D. January 1898 (has links) (PDF)
Thesis (B.S.)--University of Missouri, School of Mines and Metallurgy, 1898. / The entire thesis text is included in file. Typescript. Illustrated by author. Title from title screen of thesis/dissertation PDF file (viewed June 11, 2009)
4

Cement testing

Terrell, Arthur D. January 1899 (has links) (PDF)
Thesis (B.S.)--University of Missouri, School of Mines and Metallurgy, 1899. / The entire thesis text is included in file. Typescript. Illustrated by author. Title from title screen of thesis/dissertation PDF file (viewed June 11, 2009)
5

An investigation in concrete

Morgan, Don H. January 1916 (has links) (PDF)
Thesis (B.S.)--University of Missouri, School of Mines and Metallurgy, 1916. / The entire thesis text is included in file. Typescript. Illustrated by author. Title from title screen of thesis/dissertation PDF file (viewed May 1, 2009)
6

Diffraction Investigations of Cement Clinker and Tricalcium Silicate using Rietveld Analysis

January 2003 (has links)
Cement is the world's most popular building material, yet surprisingly its composition is not fully understood. Due to the complex nature of cement constituents, there is currently no reliable method to quantitatively determine the composition of cement. Partly this arises from the fact that the crystal structure of the main component of cement, tricalcium silicate, has not been fully determined. There has been an increase in the use of Rietveld refinement of powder diffraction data for the analysis of cement in recent years. The method has emerged as a valuable tool for the quantitative determination of the composition of cement. A further advantage of the method is its ability to refine complex crystal structures, such as tricalcium silicate. Despite the increased application of this method, few publications exist concerning the evaluation or improvement of the method for the purpose of cement analysis. In this work, the Rietveld method has been critically investigated as a tool for the identification and quantification of the different phases in cement clinker. Laboratory X-ray, synchrotron, neutron, and combined diffraction data are all used in the investigations. For the first time, comparisons of analysis results using various sources are made, rather than comparing the results from various methods. Inconsistencies in the results were found, and their causes were investigated and identified. The reliability of this method was shown to be dependent on the quality of the diffraction data, both in terms of the counting statistics and the resolution, and on the ability of the structures used in the Rietveld model to describe the phases in the sample. The only previously existing structural model for triclinic tricalcium silicate is shown, in this work, inadequate as a description of the form found in cement. Consequently, the triclinic crystal structures of tricalcium silicate were re-investigated. Using synchrotron powder diffraction data, the lattice dynamics during the T1-T2 transition were observed in detail for the first time. Superstructure reflections were observed for the two structures. The first model for the average sub-structure of the T2 form is presented. Structural modulation in the T1 form was re-investigated. The parent sub-structure, suitable for Rietveld refinement, corresponding modulation wave-vector, and superspace group of the superstructure, were identified.
7

The influence of an expansive cement on cracking in a cement treated base

Vergnolle, Robert Roland 12 1900 (has links)
No description available.
8

Investigations of Portland cement mortars

Deichler, Ludlow Vanderburg Clark 08 1900 (has links)
No description available.
9

Diffraction Investigations of Cement Clinker and Tricalcium Silicate using Rietveld Analysis

January 2003 (has links)
Cement is the world's most popular building material, yet surprisingly its composition is not fully understood. Due to the complex nature of cement constituents, there is currently no reliable method to quantitatively determine the composition of cement. Partly this arises from the fact that the crystal structure of the main component of cement, tricalcium silicate, has not been fully determined. There has been an increase in the use of Rietveld refinement of powder diffraction data for the analysis of cement in recent years. The method has emerged as a valuable tool for the quantitative determination of the composition of cement. A further advantage of the method is its ability to refine complex crystal structures, such as tricalcium silicate. Despite the increased application of this method, few publications exist concerning the evaluation or improvement of the method for the purpose of cement analysis. In this work, the Rietveld method has been critically investigated as a tool for the identification and quantification of the different phases in cement clinker. Laboratory X-ray, synchrotron, neutron, and combined diffraction data are all used in the investigations. For the first time, comparisons of analysis results using various sources are made, rather than comparing the results from various methods. Inconsistencies in the results were found, and their causes were investigated and identified. The reliability of this method was shown to be dependent on the quality of the diffraction data, both in terms of the counting statistics and the resolution, and on the ability of the structures used in the Rietveld model to describe the phases in the sample. The only previously existing structural model for triclinic tricalcium silicate is shown, in this work, inadequate as a description of the form found in cement. Consequently, the triclinic crystal structures of tricalcium silicate were re-investigated. Using synchrotron powder diffraction data, the lattice dynamics during the T1-T2 transition were observed in detail for the first time. Superstructure reflections were observed for the two structures. The first model for the average sub-structure of the T2 form is presented. Structural modulation in the T1 form was re-investigated. The parent sub-structure, suitable for Rietveld refinement, corresponding modulation wave-vector, and superspace group of the superstructure, were identified.
10

Diffraction investigations of cement clinker and tricalcium silicate using Rietveld analysis /

Peterson, Vanessa Kate. January 2003 (has links)
Thesis (Ph. D.)--University of Technology, Sydney, 2003. / "Submited for the degree of Doctor of Philosophy, University of Technology, Sydney, Dept. of Chemistry, Materials and Forensic Sciences, August 2003" Bibliographic references: leaves 224-232.

Page generated in 0.0228 seconds