• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 40
  • 13
  • 11
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Integração da produção de xilo-oligossacarídeos como co-produto de alto valor agregado ao processo de produção de celulose nanofibrilada a partir do bagaço de cana-de-açúcar / Integration of xylooligosaccharide production as a high-value co-product to the process of production of nanofibrillated cellulose from sugarcane bagasse

Wilian Fioreli Marcondes 05 March 2018 (has links)
Neste trabalho, foram realizados pré-tratamentos para maximizar o fracionamento dos componentes da biomassa e alcançar uma alta valorização do material. Relatamos uma integração de etapas de pré-tratamentos obter três produtos de alto valor agregado em um conceito de biorrefinaria: xilooligosacarídeo (XOS), xilose e celulose nanofibrilhada (CNF). Foi estudada a maximização de valor da fração hemicelulosica do bagaço de cana-de-açúcar através de extração hidrotérmica, de preferência na forma de XOS, e também se avaliou a produção de CNF, um nanomaterial emergente com inúmeras aplicações em diversos setores, como papel, têxteis e eletrônicos. Para selecionar a melhor condição de solubilização de hemicelulose na forma de XOS, as condições do processo hidrotérmicos foram avaliadas com planejamento experimental estatístico 23, com rotação do tipo estrela, a fim de analisar o efeito combinado de temperatura, tempo e concentração de ácido (H2SO4). A melhor condição experimental para produzir XOS com alto rendimento e seletividade foi a 182 °C durante 5,5 minutos e sem adição de ácido, obtendo um hidrolisado com recuperação de 43 % da xilana inicial na forma de XOS e apenas 2 % na forma de xilose. Um segundo tratamento hidrotérmico foi realizado com o objetivo de remover a xilana residual do bagaço tratado, de preferência na forma de XOS. Devido à alta recalcitrância do material, não foi possível encontrar uma condição experimental para obter alta seletividade para XOS no segundo pré-tratamento e, portanto, foi escolhido obter um hidrolisado rico em xilose, um produto que também possui diversas aplicações. As melhores condições experimentais para se obter um hidrolisado rico em xilose foram determinadas a 168 ° C durante 5,5 minutos e 1,01% m/m de H2SO4, obtendo-se uma recuperação de 36 % da xilana presente inicialmente no bagaço na forma de xilose e apenas 3 % na forma de XOS, sendo este um processo altamente seletivo para recuperação da xilana na forma monomérica. A fração sólida oriunda das etapas de extração da xilana foi deslignificada com NaOH e branqueada em duas etapas, com H2O2 em meio alcalino e com NaClO2 em meio ácido, obtendo pasta celulósica com alto teor de celulose (88,9% m/m de celulose). A polpa celulósica foi processada em um refinador de disco mecânico (SupermassColloider) para produzir celulose nanofibrilada (CNF-B). As propriedades morfológicas do CNF-B foram avaliadas e verificou-se que foi semelhante à nanocelulose de polpa Kraft (CNF-K), em relação as suas dimensões, produzida nas mesmas condições. Além disso, a produção do CNF-B consumiu cerca de um terço da energia necessária para obter o CNF-K. O balanço de massa final do processo mostrou uma alta recuperação dos carboidratos originais em produtos de alto valor agregado. A recuperação da xilana foi de cerca de 88% m/m, sendo 43% m/m de XOS e 36% m/m de xilose. O alto conteúdo recuperado dos coprodutos demonstra a alta seletividade das otimizações realizadas. Por fim, o processo obteve alta recuperação e conversão de celulose à CNF-B, com um rendimento de 88% m/m. / A pretreatment has been pursued to maximize the biomass components and achieve a high material´s valorization. Here, we report an integration of pathways, which have been effective to obtain three high value-added products in a biorefinery concept: XOS, xylose and cellulose nanofibrillated (CNF). The maximization of hemicellulose fraction was studied through hydrothermal extraction from sugarcane bagasse, preferably oligosaccharides (XOS) form, and it was also evaluated CNF production, an emerging nanomaterial with numerous applications in diverse sectors such as paper, textiles and electronics. To select the best condition of hemicellulose solubilization in the form of XOS, the hydrothermal process conditions were evaluated with statistical experimental design to analyze the combined effect of temperature, time and acid concentration (H2SO4). The best experimental condition to produce XOS with high yield and selectivity was at 182 ° C for 5.5 minutes and without acid addition, obtaining a hydrolysate with 75% w/w of XOS content, which corresponds to 43% w/w of the original xylan. A second hydrothermal treatment was performed with the aim of remove a residual xylan from treated bagasse, focusing in XOS form. Because of the high susceptibility of the material, it was not possible to find an experimental condition to achieve high selectivity for XOS in the second pretreatment and, therefore, it was chosen to obtain a hydrolyzate rich in xylose, a product with many applications as well. The best experimental conditions to the hydrolyzate system based in xylose was determined at 168 ° C for 5.5 minutes and 1.01% w/w H2SO4, obtaining a xylose\'s yields of 36% w/w (initial xylan). The solid fraction of the second hydrothermal step was deslignificated with NaOH and bleached in two steps, with H2O2 at alkaline medium and with NaClO2 at acid medium, obtaining cellulosic pulp with high cellulose content (88.9% w/w of cellulose). Cellulosic pulp was processed in a mechanical disc refiner (SupermassColloider) to produce fibrillated nanocellulose (CNF-B). The morphological properties of the CNF-B were evaluated, and it was found to be similar to Kraft pulp nanocellulose (CNF-K) produced at same conditions. Besides that, the production of CNF-B consumed about one third of the energy required to obtain CNF-K. CNF-B and CNF-K were also compared in terms of mean diameter and it was obtained 56.72 nm and 36.83 nm, respectively. The final mass balance of the process showed a high recovery of the original carbohydrates in means of high value-added product. The recovery of xylan was around 88%, being 43% w/w of XOS and 36% w/w of xylose. The high content recovered of the co-products demonstrate the high selectivity of the optimizations performed. Thus, this resulted in a high recovery and conversion of cellulose in the CNF-B with a yield of 88% w/w.
12

Transparent paper: Evaluation of chemical modification routes to achieve self-fibrillating fibres / Transparent papper: Utvärdering av kemiska metoder för att tillverka självfibrillerande fibrer

Sandberg Birgersson, Paulina January 2020 (has links)
Transparenta papper tillverkade av cellulosa nanofibriller (CNF), visar stor potential att kunna ersätta petroleumbaserade plaster inom många användningsområden, till exempel för mat- och varuförpackningar. CNF, även känt som nanocellulosa, kombinerar viktiga cellulosaegenskaper, med unika egenskaper hos nanomaterial. Denna kombination av egenskaper möjliggör tillverkning av ett pappers-liknande material som uppvisar både utmärkta mekaniska egenskaper och hög transparens. Användningen av nanocellulosa är dock förknippad med diverse utmaningar, för att materialet ska kunna bli kommersiellt slagkraftigt. En av de främsta utmaningarna är nanocellulosas höga affinitet för vatten och dess höga specifika yta som försvårar hanteringen av materialet. Avvattningen av nanocellulosadispersioner, för att tillverka transparenta papper, kan ta upp till flera timmar. För att övervinna detta hinder, har avdelningen för Fiberteknologi vid KTH tillsammans med BillerudKorsnäs AB, nyligen utvecklat en metodik för att skapa så kallade själv-fibrillerande fibrer (SFFer). Dessa fibrer möjliggör en snabbavvattnad papperstillverkningsprocess med makroskopiska vedbaserade fibrer, som efter tillverkning av pappret omvandlas till ett nanocellulosapapper, det vill säga ett nanopapper. För att erhålla SFFer krävs det att höga koncentrationer av karboxyl- och aldehydgrupper introduceras i cellulosafibrerna. Införandet av dessa funktionella grupper, möjliggör självfibrilleringen då SFFerna utsätts för moderata alkali-koncentrationer. I den ursprungliga studien som utfördes av Gorur m.fl., introducerades de funktionella grupperna med hjälp av sekventiell TEMPO- och periodatoxidation. I detta examensarbete, har alternativa kemiska metoder för att introducera samma kemiska funktionalitet som TEMPO-periodatsystemet undersökts. Huvudsyftet med arbetet är att besvara frågan: Hur påverkar olika kemiska behandlingar vid SFF tillverkningen, de kemiska och fysikaliska egenskaperna hos de modifierade fibrerna, samt de slutgiltiga pappersegenskaperna? För att besvara frågan, preparerades fibrer med liknande karboxyl- och aldehydinnehåll med hjälp av följande tre kemiska metoder: 1) TEMPO- följd av periodatoxidation (detta kommer att användas som referenssystem); 2) periodat- följd av kloritoxidation; 3) karboxymetylering följd av periodatoxidation. Egenskaperna hos fibrerna undersöktes med avseende på aldehyd- och karboxylinnehåll, avvattningspotential och förmåga att självfibrillera. Papper tillverkades med hjälp av en vakuumfiltreringsuppställning och följande egenskaper undersöktes hos pappret: mekaniska egenskaper (dragstyrka, brottsyrka och Young’s modul); optiska (transparens och ytreflektion); samt syrgaspermeabilitet. De erhållna fibrerna från samtliga tre kemiska modifieringar visade på självfibrillerande egenskaper i alkaliska lösningar. Detta beteende styrker hypotesen att ett strategiskt införande av ett högt karboxyl- och aldehydinnehåll leder till självfibrillerande fibrer. Transparenta papper tillverkade av fibrer som utsatts för TEMPO-periodatoxidation samt klorit-periodatoxidation, visade på utmärkta mekaniska egenskaper, hög transparens och bra barriäregenskaper - jämförbara med vad som vanligen kan noteras hos papper tillverkat av nanocellulosa. Samtliga egenskaper förbättrades ytterligare efter fibrillering av fibrerna i papperen. De karboxymetylerade-periodatoxiderade materialet, å andra sidan, uppvisade andra egenskaper jämfört med de två, tidigare nämnda, metoderna. TEMPO-periodat- och periodat-klorit-pappersmassan var halvgenomskinlig och geléliknande, medan den karboxymetylerade-periodatoxiderade massan var mer lik det omodifierade materialet. Detsamma gällde det tillverkade pappret som liknade ett konventionellt papper. Det var inte heller möjligt att åstadkomma en fibrillering av det karboxymetylerade-periodatoxiderade-pappret som utsattes för behandling med alkaliska lösningar. Avvattningstiden vid papperstillverkningen varierad mellan 4 och 60 sekunder, och karboxymetylering-periodat oxidation visade på snabbast avvattningstid. Den förlängda avvattningstiden i jämförelse med studien utförd av Gorur m.fl., tros främst bero på att ett filtreringsmembran med mindre porer användes på vakuumfiltreringsuppställningen, istället för en avvattningsvira som tidigare använts. Sammanfattningsvis så har det visat sig möjligt att tillverka självfibrillerande fibrer med hjälp av samtliga tre undersökta kemiska modifieringar. SFFer möjliggör tillverkning av snabbavvattnade transparenta nanocellulosapapper och visar på så vis på hög potential att kunna ersätta olje-baserade plaster till många förpackningsapplikationer. / Transparent papers made from cellulose nanofibrils (CNF), derived from e.g. wood, show great potential to replace petroleum-based plastics in many application areas, such as packaging for foods and goods. CNF, also known as nanocellulose, combine important cellulose properties with the unique features of nanoscale materials, gaining paper-like materials with outstanding mechanical properties and high transparency. However, nanocellulose faces various challenges in order to make the products commercially competitive. One of the main challenges is accompanied with nanocelluloses’ high affinity for water, which makes processing difficult. Dewatering of a nanocellulose dispersion in order to produce transparent paper may take up to several hours. To overcome this obstacle, the Fibre technology division at KTH Royal Institute of technology and BillerudKorsnäs AB have recently developed a new concept of self-fibrillating fibres (SFFs). This material enables fast-dewatering papermaking using fibres of native dimensions and conversion into nanocellulose after the paper has been prepared. In order to obtain SFFs, proper amounts of charged groups and aldehyde groups need to be introduced into the cellulose backbone. When SFFs are exposed to high alkali concentration, i.e. > pH=10, the fibres self-fibrillates into CNFs. In the original study, the functional groups were introduced through sequential TEMPO oxidation and periodate oxidation. In this work, alternative chemical routes have been examined to prepare SFFs with the same functional groups as introduced with the TEMPO-periodate system. The aim of the thesis has been to answer: how does different chemical routes to prepare transparent nanopaper made from SFFs affect the chemical and physical properties of the modified fibres, as well as the final physical properties of the transparent papers? To answer the question, fibres with similar carboxyl and aldehyde contents were prepared using three chemical routes: 1) TEMPO oxidation followed by periodate oxidation (which was used as reference system); 2) periodate oxidation followed by chlorite oxidation; 3) carboxymethylation followed by periodate oxidation. The properties of the fibres were examined regarding aldehyde and carboxyl content, dewatering potential and self-fibrillating ability. Papers were produced using a vacuum filtration set-up and the properties investigated were the mechanical; tensile strength, strain at failure and Young’s modulus, the optical properties; transparency and haze, as well as the oxygen permeability. In order to investigate the impact of the fibrillation of the papers, the properties were measured for both unfibrillated and fibrillated samples. Furthermore, the gravimetric yield after each chemical modification procedure was examined, as well as the dewatering time during sheet making. Fibres obtained from all three chemistries demonstrated self-fibrillating properties in alkaline solutions. This strengthens the hypothesis that the strategical introduction of aldehydes and carboxyl groups is the main feature responsible for the self-fibrillating ability of the fibres. Transparent papers made from fibres treated through TEMPO-periodate oxidation and periodate-chlorite oxidation showed excellent mechanical, optical and barrier properties, comparable to those seen in nanocellulose papers. The properties were further increased after fibrillation. The carboxymethylated-periodate oxidized fibres, on the other hand, behaved differently from the others. While the TEMPO-periodate and periodate-chlorite pulp was semi-translucent and gel-like, the carboxymethylated-periodate oxidized fibres resembled more the unmodified material. Likewise, the properties of those papers resembled conventional paper and no fibrillationwas experienced after immersing the papers in alkaline solution, according to the same protocol developed for the other two chemistries. The dewatering time during sheet making ranged from 4–60 seconds (carboxymethylation-periodate oxidation showing the fastest dewatering rates). The increased dewatering time compared to earlier studies is believed to mainly be due to the use of a filtration membrane on the vacuum filtration set-up, instead of a metallic wire with larger pores. Overall, SFFs was successfully produced using three different chemical routes. SFFs enables production of fast-dewatering transparent nanocellulose papers that shows the potential to replace oil-based plastics in many packaging applications.
13

Temporal logic encodings for SAT-based bounded model checking

Sheridan, Daniel January 2006 (has links)
Since its introduction in 1999, bounded model checking (BMC) has quickly become a serious and indispensable tool for the formal verification of hardware designs and, more recently, software. By leveraging propositional satisfiability (SAT) solvers, BMC overcomes some of the shortcomings of more conventional model checking methods. In model checking we automatically verify whether a state transition system (STS) describing a design has some property, commonly expressed in linear temporal logic (LTL). BMC is the restriction to only checking the looping and non-looping runs of the system that have bounded descriptions. The conventional BMC approach is to translate the STS runs and LTL formulae into propositional logic and then conjunctive normal form (CNF). This CNF expression is then checked by a SAT solver. In this thesis we study the effect on the performance of BMC of changing the translation to propositional logic. One novelty is to use a normal form for LTL which originates in resolution theorem provers. We introduce the normal form conversion early on in the encoding process and examine the simplifications that it brings to the generation of propositional logic. We further enhance the encoding by specialising the normal form to take advantage of the types of runs peculiar to BMC. We also improve the conversion from propositional logic to CNF. We investigate the behaviour of the new encodings by a series of detailed experimental comparisons using both hand-crafted and industrial benchmarks from a variety of sources. These reveal that the new normal form based encodings can reduce the solving time by a half in most cases, and up to an order of magnitude in some cases, the size of the improvement corresponding to the complexity of the LTL expression. We also compare our method to the popular automata-based methods for model checking and BMC.
14

Local search methods for constraint problems

Muhammad, Muhammad Rafiq Bin Unknown Date (has links) (PDF)
This thesis investigates the use of local search methods in solving constraint problems. Such problems are very hard in general and local search offers a useful and successful alternative to existing techniques. The focus of the thesis is to analyze the techniques of invariants used in local search. The use of invariants have recently become the cornerstone of local search technology as they provide a declarative way to specify incremental algorithms. We have produced a series of program libraries in C++ known as the One-Way-Solver. The One-Way-Solver includes the implementation of incremental data structures and is a useful tool for the implementation of local search. The One-Way-Solver is applied to two challenging constraint problems, the Boolean Satisfiability Testing (SAT) and university course timetabling problems.
15

Development of a porous material from cellulose nanofibrils

Törneman, Hedda January 2021 (has links)
Cellulose nanofibrils are a biobased and renewable material with potential to be used in many different applications. Such applications include air filtration, absorption of liquids, and thermal insulation.  To be used for these applications the cellulose nanofibrils must form a porous and dry material. However, maintaining some degree of porosity after drying is difficult, since the fibrils are extracted in liquid and tend to collapse into a dense material upon drying. Certain methods have proven effective for making a dry porous material from cellulose nanofibrils, but these are often expensive and not suitable for large scale production. The aim of this project is to test possible methods for making a highly porous cellulose nanofibril-based material. These methods must be environmentally sustainable and suitable for large scale production. An extensive screening has been conducted with the aim of identifying methods resulting in materials with high porosity. The obtained materials have been analysed further to give a more thorough understanding of the porosity as well as other characteristics. The results indicate that cross-links in the material strengthen the structure, and that drying samples from water always results in complete collapse or very dense materials while drying samples from certain solvents other than water results in more porous materials. The analysed materials had very different porosities, some of which were relatively high. The most porous material analysed by Brunauer-Emmett-Teller gas adsorption had a surface area of 9.5 m2/g. This project gives insight into how cross-linking chemistries and treatment with different solvents and pH affect the resulting cellulose nanofibril-based material, as well as knowledge about which methods can be used to successfully produce dry porous cellulose nanofibril-based materials.
16

Pseudo-Boolean Constraint Encodings for Conjunctive Normal Form and their Applications

Steinke, Peter 20 February 2020 (has links)
In contrast to a single clause a pseudo-Boolean (PB) constraint is much more expressive and hence it is easier to define problems with the help of PB constraints. But while PB constraints provide us with a high-level problem description, it has been shown that solving PB constraints can be done faster with the help of a SAT solver. To apply such a solver to a PB constraint we have to encode it with clauses into conjunctive normal form (CNF). While we can find a basic encoding into CNF which is equivalent to a given PB constraint, the solving time of a SAT solver significantly depends on different properties of an encoding, e.g. the number of clauses or if generalized arc consistency (GAC) is maintained during the search for a solution. There are various PB encodings that try to optimize or balance these properties. This thesis is about such encodings. For a better understanding of the research field an overview about the state-of-the art encodings is given. The focus of the overview is a simple but complete description of each encoding, such that any reader could use, implement and extent them in his own work. In addition two novel encodings are presented: The Sequential Weight Counter (SWC) encoding and the Binary Merger Encoding. While the SWC encoding provides a very simple structure – it is listed in four lines – empirical evaluation showed its practical usefulness in various applications. The Binary Merger encoding reduces the number of clauses a PB encoding needs while having the important GAC property. To the best of our knowledge currently no other encoding has a lower upper bound for the number of clauses produced by a PB encoding with this property. This is an important improvement of the state-of-the art, since both GAC and a low number of clauses are vital for an improved solving time of the SAT solver. The thesis also contributes to the development of new applications for PB constraint encodings. The programming library PBLib provides researchers with an open source implementation of almost all PB encodings – including the encodings for the special cases at-most-one and cardinality constraints. The PBLib is also the foundation of the presented weighted MaxSAT solver optimax, the PBO solver pbsolver and the WBO, PBO and weighted MaxSAT solver npSolver.
17

Polymer Directed Engineering of Novel Cellulose Network / Polymerstyrd konstruktion av nya cellulosanätverk

Gradin, Christel, Landström, Adina, Szecsödy, Julia January 2021 (has links)
This study investigated a CNF/dendrimer hydrogel and how different concentrations of the carboxylated CNF and bis-MPA ammonium dendrimer affected the hydrogels’ rheological properties. A third generation bis-MPA ammonium dendrimer was diffused into a dispersion of carboxylated cellulose nanofibrils. The CNF was carboxylated by TEMPO-oxidation and phosphate buffer deprotonating the carboxylic group. The ammonium dendrimers are cationic and, when added to the dispersion, act as a salt together with the CNF-carboxy anion creating a cationic dendrimer salt bridge. These will serve as physical crosslinks, and a CNF/dendrimer network is formed; the structure and the absorbed water make a hydrogel. Amplitude strain sweeps were performed with a rheometer to determine the gels' elastic capabilities in terms of storage modulus, G’ and loss modulus, G” as the function of the shear stress. The result shows that a higher concentration of both CNF dispersion and dendrimer yielded a higher value of the storage modulus and a lower critical strain, meaning that the hydrogel becomes firmer and less elastic. / I denna studie undersöktes en CNF/dendrimer hydrogel och hur olika koncentrationer av den karboxylerade CNF och bis-MPA ammonium dendrimer påverkar hydrogelens reologiska egenskaper. En tredje generations bis-MPA ammonium dendrimer läts diffusera i en dispersion av karboxylerade cellulosa nanofibriller (CNF). CNF karboxylerades via TEMPO-oxidation, varefter en fosfatbuffer adderades för att skapa en anjon. Dendrimerens ammoniumgrupper är katjoner och då den adderas till dispersionen kommer den agera som ett salt tillsammans med CNF-karboxyanjonen vilket skapar en katjonisk dendrimersaltbrygga. Denna agerar som en fysisk tvärbindning och skapar ett nätverk av CNF och dendrimer. Nätverket skapar tillsammans med det absorberade vattnet en hydrogel.  En amplitude strain sweep utfördes för att bestämma gelernas viskoelastiska förmåga, från mätningarna fås elasticitetsmodulen, G’ och den viskösa modulen, G’’ som funktioner av skjuvningen. Resultatet visar att en högre koncentration av CNF-dispersionen och dendrimeren leder till ett högre värde på elasticitetsmodulen samt ett lägre värde för den kritiska skjuvningen. Detta innebär att hydrogelen blir hårdare och mindre elastisk.
18

Property prediction of super-strong nanocellulose fibers / Förutsägning av egenskaper hos superstarka nanocellulosafibrer

Abada, Maria, Fossum, Elin, Brandt, Louise, Åkesson, Anton January 2020 (has links)
The innovative technology behind production of strong biofilaments involves the process of spinning filaments from nanoparticles extracted from wood. These nanoparticles are called cellulose nanofibrils (CNFs). The spun filaments can have high mechanical properties, rivaling many other plant based materials, and could be an environmentally friendly replacement for many materials in the future such as fabrics and composites. Before mass production might be possible, the optimal dispersion properties must be determined for the intended use, with regard to concentration, method of oxidation (TEMPO-oxidation or carboxymethylation) and pretreatment through sonication and centrifugation. In this bachelor’s thesis attributes of spun filaments were investigated in order to find a correlation between mechanical properties and the effects of concentration, method of oxidation as well as sonication and centrifugation of the dispersions. The mechanical properties were also compared to the fibrils’ ability to entangle and align during flow-focusing. A variety of analytical methods: flow-stop, tensile testing, scanning electron microscopy (SEM) and wide angle X-ray scattering (WAXS) were implemented for the dispersions and filaments. The results from this study show that flow-stop analysis could be used to determine which CNF dispersions are spinnable and which are non-spinnable, along with which spinnable dispersion would yield the strongest filament. It was also concluded that crystallinity of fibrils affects the mechanical properties of filaments and that TCNFs are generally more crystalline than CMCs. Pretreatment through sonication and centrifugation seems to have a negative impact on spinnability and sonication in combination with low concentration seems to lead to non-spinnable conditions. On the other hand, sonicated dispersions seem to yield a greater number of samples without aggregates than non-sonicated ones. Aggregates, however, seem to only affect ultimate stress out of the measured mechanical properties. Furthermore, concentration and viscosity affect spinnability and CMC dispersions seem to yield thicker filaments than TCNF dispersions. However, due to lack of statistically validated data any definitive conclusions could not be drawn.
19

Development And Characterization Of Nanoparticlee Enhancements In Pyrolysis-derived High Temperature Composites

McKee, James 01 January 2013 (has links)
Thermal protection systems, which are commonly used to protect spacecraft during atmospheric entry, have traditionally been made of materials which are traditionally high in manufacturing costs for both the materials needed and the manufacturing complexity, such as carbon-carbon composites and aerogels. [1] In addition to their manufacturing costs, these materials are also limited in their strength, such as PICA, in a way that necessitate the use of tiles as opposed to single structures because they are not capable of supporting larger structures. [2] The limitations of polymer reinforced composites have limited their entry into these applications, except for pyrolyzed composite materials, such as carbon-carbon and ceramic composites. These materials have been successfully demonstrated their utility in extreme environments, such as spacecraft heat shields, but their high costs and the difficulty to manufacture them have limited their use to similarly high performance applications where the costs are justifiable. Previous work by others with “fuzzy fiber” composites have shown that aligned carbon nanotubes (CNTs) grown on fibers can improve their thermal conductivity and wettability. To this end vertically aligned CNTs were studied for their potential use, but found to be difficult to process with current conventional techniques. A composite material comprised of basalt, a relatively new reinforcing fiber, and phenolic, which has been used in high-temperature applications with great success was made to attempt to create a new material for these applications. To further improve upon the favorable properties of the resulting composite, the composite was pyrolyzed to produce a basalt-carbon composite with a higher thermal stability than its pristine state. While testing the effects of pyrolysis on the thermal stability, a novel iv technique was also developed to promote in-situ carbon nanotube growth of the resulting basaltcarbon composite without using a monolithic piece of cured phenolic resin in place of the standard aromatic hydrocarbon-catalyst precursor. [3, 4] The in-situ growth of carbon nanotubes (CNTs) was explored as their thermal stability [5] and effectiveness in improving performance has been previously demonstrated when used as a resin additive [6]. The specimens were examined with SEM, EDS, and TGA to determine the effects of both pyrolysis and CNT growth during pyrolysis of the basalt phenolic composites. These tests would confirm the presence of CNTs/CNFs directly grown in the composite by pyrolysis, and confirm their composition by EDS and Raman spectroscopy. EDS would additionally confirm that the surface of the basalt fibers possess a composition suitable for CNT growth, similar to the parameters of CVD processing. Additional testing would also show that the growth behavior of the CNTs/CNFs is dependent on temperature as opposed to composition, indicating that there is a threshold temperature necessary to facilitate the availability of catalysts from within the basalt fibers. The thermal stability shown by TGA indicates that the process of pyrolysis leaves the newly formed composite with a high degree of thermal stability, making the new materials potentially usable in applications such as turbines, in addition to large-scale thermal protection systems.
20

3D Printing Hydrogel Artificial Muscles and Microrobotics / 3D-skriva articifiella muskler och mikrorobotar med hydrogel

Alterby, Malin, Johnson, Emily, Jonason, Anton, Svensson, Denize January 2023 (has links)
The purpose of this lab was to investigate the printability of cellulose nanofiber/carbon nanotubes, their functions as actuators, and to compare these properties with MXene/nano cellulose gels. Data on MXene/nano cellulose gel was obtained from previous research made by Hamedi labs. Data on carbon nanotubes were collected through experiments evaluating different concentrations and sonication times to yield a gel with high conductivity and viscosity. While it was concluded that both gels could be printed into 2D or 3D shapes, the latter failed to maintain its structure over time due to issues with drying. However, it was found that only 2D MXene/CNF could be used as a reversible actuator. / Syftet med laborationen var att undersöka 3D skrivningsförmågan för nanocellulosa/ kolnanorör samt samt deras förmåga att fungera att svälla elektroniskt. Vidare jämfördes dessa egenskaper med MXene/nanocellulosageler. Data på MXene/nanocellulosa insamlades från tidigare experiment gjorda av Hamedi labs. Data på kolnanorör insamlades genom en rad experiment, vilka utvärderade olika koncentrationer och sonikeringstider för att producera geler med hög konduktivitet och viskositet. Slutsatsen blev att båda gelerna kunde 3D printas, men endast MXene/nanocellulosageler kunde användas för elektronisk svällning och avsvällning. Inga geler kunde göras till 3D strukturer.

Page generated in 0.0235 seconds