• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification

Parvez, A.M., Mujtaba, Iqbal, Wu, T. 08 November 2015 (has links)
Yes / In this study, air, steam and CO2-enhanced gasification of rice straw was simulated using Aspen PlusTM simulator and compared in terms of their energy, exergy and environmental impacts. It was found that the addition of CO2 had less impact on syngas yield compared with gasification temperature. At lower CO2/Biomass ratios (below 0.25), gasification system efficiency (GSE) for both conventional and CO2-enhanced gasification was below 22.1%, and CO2-enhanced gasification showed a lower GSE than conventional gasification. However at higher CO2/Biomass ratios, CO2-enhanced gasification demonstrated higher GSE than conventional gasification. For CO2-enhanced gasification, GSE continued to increase to 58.8% when CO2/Biomass was raised to 0.87. In addition, it was found that syngas exergy increases with CO2 addition, which was mainly due to the increase in physical exergy. Chemical exergy was 2.05 to 4.85 times higher than physical exergy. The maximum exergy efficiency occurred within the temperature range of 800 oC to 900 oC because syngas exergy peaked in this range. For CO2-enhanced gasification, exergy efficiency was found to be more sensitive to temperature than CO2/Biomass ratios. In addition, the preliminary environmental analysis showed that CO2-enhanced gasification resulted in significant environmental benefits compared with stream gasification. However improved assessment methodologies are still needed to better evaluate the advantages of CO2 utilization.
2

Bio-DME production based on conventional and CO2-enhanced gasification of biomass: A comparative study on exergy and environmental impacts

Parvez, A.M., Wu, T., Li, S., Miles, N., Mujtaba, Iqbal 02 February 2018 (has links)
Yes / In this study, a novel single-step synthesis of dimethyl ether (DME) based on CO2-enhanced biomass gasification was proposed and simulated using ASPEN PlusTM modelling. The exergetic and environmental evaluation was performed in comparison with a conventional system. It was found that the fuel energy efficiency, plant energy efficiency and plant exergetic efficiency of the CO2-enhanced system were better than those of the conventional system. The novel process produced 0.59 kg of DME per kg of gumwood with an overall plant energy efficiency of 65%, which were 28% and 5% higher than those of conventional systems, respectively. The overall exergetic efficiency of the CO2-enhanced system was also 7% higher. Exergetic analysis of each individual process unit in both the CO2-enhanced system and conventional systems showed that the largest loss occurred at gasification unit. However, the use of CO2 as gasifying agent resulted in a reduced loss at gasifier by 15%, indicating another advantage of the proposed system. In addition, the LCA analysis showed that the use of CO2 as gasifying agent could also result in less 21 environmental impacts compared with conventional systems, which subsequently made the CO2-22 enhanced system a promising option for a more environmental friendly synthesis of bio-DME. / Part of this work is sponsored by Ningbo Bureau of Science and Technology under its Innovation Team Scheme (2012B82011) and Major R&D Programme (2012B10042).
3

Synthesis of Bio-Dimethyl Ether Based on Carbon Dioxide-Enhanced Gasification of Biomass: Process Simulation Using Aspen Plus

Parvez, A.M., Mujtaba, Iqbal, Hall, P., Lester, E.H., Wu, T. 20 January 2016 (has links)
Yes / Process simulation of a single-step synthesis of DME based on CO2-enhanced gasification of rice straw was conducted using Aspen PlusTM. The process consists of gasification unit, heat recovery unit, gas purification unit, single-step DME synthesis, and DME separation unit. In the simulation, highly pure DME was produced by the control of CO2 concentration in syngas to a very low level prior to synthesis. A gasification system efficiency of 36.7% and CO2 emission of 1.31 kg/kg of DME were achieved. Bio-DME production based on CO2-enhanced gasification of biomass was found to be more cost-effective as it required 19.6% less biomass than that of DME production based on conventional biomass gasification. The performance and environmental benefits of the proposed process could be further improved by the utilization of unreacted gases and the handling of CO2 generated via incorporating poly-generation concept or carbon storage, which could also potentially improve process economics. / Ningbo Bureau of Science and Technology; Innovation Team Scheme; Major R&D Programme; Provincial Innovation Team on the Commercialisation of SOx and NOx Removal Technologies; University of Nottingham Ningbo China

Page generated in 0.1237 seconds