261 |
Transitions autonomes entre les vols non stationnaire et stationnaire d'un véhicule aérien miniature à ailes fixesMyrand-Lapierre, Vincent 16 April 2018 (has links)
Les véhicules aériens miniatures à ailes fixes (MiniAV) sont de petits avions avec une envergure d'ailes de moins de 1000 mm et pesant moins de 500 grammes. Grâce aux avancées qui ont été réalisées ces dernières années dans la miniaturisation des autopilotes et dans la propulsion électrique, il est maintenant possible de construire des MiniAVs qui peuvent être utilisés à des fins de reconnaissance en milieu restreint ou hostile. Pour réaliser cet objectif, le MiniAV doit être capable d'effectuer, de façon semi-autonome, des vols non stationnaires et stationnaires et être capable de réaliser des transitions autonomes entre ces modes. Ce mémoire décrit le développement d'une stratégie de contrôle pour permettre à un MiniAV de réaliser des transitions autonomes entre les modes de vol non stationnaire et stationnaire. Il est possible de diviser l'enveloppe de vol d'un MiniAV en 4 modes distincts : le mode non stationnaire, le mode non stationnaire vers stationnaire (L2H), le mode stationnaire et le mode stationnaire vers non stationnaire (H2L). Les structures des modèles pour les modes non stationnaires et stationnaires sont basées sur la linéarisation d'un modèle de MiniAV à corps rigide ayant 6 degrés de liberté. Les contrôleurs de ces deux principaux modes de vol sont présentés. Le mode L2H est gérée par le contrôleur du mode non stationnaire, tandis que le mode H2L est géré par le contrôleur du mode stationnaire. Une approche systématique, appuyée par un superviseur basé sur la logique, est développée pour gérer les transitions entre les modes. La performance du superviseur est démontrée à travers des vols expérimentaux sur un banc de test. Il est montré que la stratégie proposée est capable de mieux performer que les méthodes rencontrées dans la littérature utilisant des plateformes similaires.
|
262 |
Control and optimization of the primary drying of lyophilization in vialsChia, Andrea 13 December 2023 (has links)
Titre de l'écran-titre (visionné le 28 juin 2023) / La lyophilisation est devenue un sujet essentiel de développement dans l'industrie pharmaceutique. Il s'agit d'une technique de séchage reposant sur le principe de la sublimation qui est utilisée pour stabiliser et conserver des matériaux qui ne peuvent pas être séchés par des techniques conventionnelles. La lyophilisation comporte trois étapes : la congélation, le séchage primaire et le séchage secondaire. L'efficacité globale du procédé dépend principalement de la performance du séchage primaire, qui représente l'étape la plus longue et la plus énergivore et détermine en grande partie la qualité du produit final. La pratique courante consiste à opérer le procédé sous des profils pré-calculés avec des marges de sécurité, ce qui conduit à des cycles conservateurs et sous-performants. La commande automatique est donc une voie prometteuse pour réduire la durée de séchage, mais elle se limite généralement à des applications en flacon unique négligeant l'hétérogénéité spatiale affectant la dynamique de séchage intra-lot. D'autres défis sont liés à l'inaccessibilité des variables clés du processus ou à l'utilisation d'instruments intrusifs pour leur mesure. Ce projet de recherche étudie la commande et l'optimisation du séchage primaire de la lyophilisation en flacons, en abordant trois aspects principaux : la modélisation, l'estimation et la commande. La conception des stratégies d'estimation et de contrôle exige d'abord une représentation fiable du procédé. Le modèle proposé intègre les équations fondamentales du séchage primaire dans un modèle linéaire à paramètres variables, fournissant un compromis approprié entre la précision du modèle et le coût de calcul. Cette étude explore également la conception d'estimateurs en ligne de variables clés du procédé à l'aide d'instruments non invasifs, applicables à des équipements pilotes et industriels. La mesure globale est convertie pour tenir compte des contributions des flacons individuels, et cette mesure locale est utilisée dans la conception des estimateurs en ligne de la température du produit. Trois estimateurs sont formulés à l'aide des algorithmes suivants : filtre de Kalman étendu, l'estimation à fenêtre glissante et l'estimation non linéaire par moindres carrés. Des résultats satisfaisants ouvrent la voie à la possibilité de concevoir des estimateurs multi-flacons avec la mesure globale de la vapeur d'eau et englobant l'hétérogénéité spatiale du séchage. Le principe de commande initial a été développé et évalué en simulation pour un cas à flacon unique. Il a considéré deux algorithmes : une commande proportionnelle-intégrale et la commande prédictive. Le schéma de contrôle a été étendu à un problème à multiples flacons et validé dans une unité à l'échelle pilote. Les résultats ont été concluants, la commande automatique a conduit à des réductions significatives du temps de séchage par rapport aux conditions de fonctionnement typiques, et l'approche multi-flacons a permis d'obtenir un cycle très fiable. / Lyophilization, or freeze-drying, has become an essential subject of ongoing development in the pharmaceutical industry. It is a drying technique relying on the sublimation principle and is used to stabilize and preserve materials that cannot be dried by conventional techniques. Lyophilization involves three stages: freezing, primary drying, and secondary drying. The global efficiency of the process relies mainly on the performance of primary drying, as it represents the most time and energy-consuming stage and largely determines the quality of the final product. The common practice runs the process under pre-calculated profiles with safety margins, leading to conservative and underperforming cycles. Process control is thus a promising avenue to decrease drying duration, but it is generally confined to single-vial applications neglecting the spatial heterogeneity affecting the drying dynamics intra-lot. Additional challenges are related to the inaccessibility of key process variables or the use of intrusive instrumentation for their measurement. This research project investigates the control and optimization of the primary drying of lyophilization in vials, addressing three main aspects: modeling, estimation, and control. The conception of estimation and control strategies first requires a reliable process representation. The proposed model accommodates the fundamental equations of primary drying into a linear parameter-varying model, providing a suitable compromise between model accuracy and computational cost. This study also explores the design of in-line estimators of key process variables using non-invasive instrumentation, with applicability to pilot and industrial scale equipment. The global reading is converted to account for the contributions of individual vials, and this local measurement is used in the design of in-line estimators of the product temperature. Three estimators are formulated using the following algorithms: extended Kalman filter, moving horizon estimation, and nonlinear least square estimation. Satisfactory results open the door to the possibility of designing multi-vial estimators with the global reading of water vapor and encompassing the spatial heterogeneity of drying. The initial control framework was developed and benchmarked in simulation for a single-vial case. It considered two algorithms: a standard proportional integral control and a model predictive control. The control scheme was extended to a multi-vial problem and validated in a pilot-scale unit. Results were conclusive, process control led to significant drying time reductions compared to typical operating conditions, and the multi-vial approach yielded a highly dependable cycle.
|
263 |
Intuitive Physical Human-Robot Interaction Using a Parallel Mechanism in a Macro-Mini Architecture.Badeau, Nicolas 27 January 2024 (has links)
Ce mémoire présente le développement d'un mécanisme de type macro-mini permettant des interactions humain-robot intuitives. Le type d'architecture macro-mini permet de contrôler un robot ayant une grande impédance tel qu'une cellule robotisée cartésienne (e.g. gantry) à l'aide d'un mécanisme à plus faible impédance, réduisant considérablement l'effort devant être fourni par l'opérateur et atténuant par conséquent la fatigue de ce dernier. Le mécanisme macro-mini proposé est composé d'une cellule robotisée cartésienne ayant trois axes et d'un mécanisme parallèle découplé à trois degrés de liberté. Chacun des axes de la cellule est contrôlé à partir de mesures de position angulaire provenant d'un encodeur attaché à l'un des degrés de liberté du mécanisme parallèle. Ce type d'architecture découplé permet un contrôle simple et intuitif. Le contrôle par impédance est privilégié pour ce type d'architecture. Une comparaison expérimentale des performances entre le contrôle par impédance et par admittance utilisant des capteurs d'effort est également présentée. L'analyse des résultats obtenus démontre que le contrôle par impédance permet d'effectuer des tâches plus rapidement (facteur 2) et avec moins d'effort (facteur 20). Une analyse approfondie de la stabilité du système avec différents modèles de contrôleur par impédance a été effectuée. Ceci a permis de déterminer que le contrôleur par impédance standard n'est pas stable lorsque utilisé avec l'architecture proposée. Un contrôleur alternatif a donc été développé afin de permettre un contrôle plus intuitif et stable. L'ajout d'un moteur à l'axe de rotation du mécanisme parallèle a permis la création de retour haptique à l'utilisateur a n de simuler des interactions avec des objets ou contraintes virtuelles. Ce retour haptique a également été utilisé pour varier l'impédance ressentie par l'utilisateur en ajoutant une masse virtuelle à l'effecteur du mini. Pour terminer, l'analyse de la dynamique du système est utilisée pour la détection de collision entre le mécanisme parallèle et l'environnement sans avoir recours à des capteurs d'effort. Cet élément est essentiel pour des interactions humain-robot sécuritaires. / This thesis presents the development of a novel macro-mini mechanism allowing intuitive physical human-robot interaction (pHRI). This type of architecture allows the control of a high-impedance robot such as a Cartesian gantry robot in a manufacturing environment using a smaller and lower impedance mechanism, therefore allowing a signi cant reduction of the operator's e ort and fatigue. The proposed macro-mini mechanism consists of a three-axis Cartesian gantry system (i.e. macro mechanism) and a passive three-degree-of-freedom parallel mechanism (i.e. mini mechanism). The mini mechanism is statically balanced at its workspace centre and all three degrees of freedom are decoupled. This means that the gantry axes are individually controlled using the measurement of a single angular encoder of the mini. It also means that the motion of the mini mechanism along the direction of a degree of freedom does not a ect the remaining degrees of freedom, considerably simplifying the control. The use of impedance control with this type of architecture is thoroughly described and analyzed. An experimental comparison with a standard admittance controller using a force sensor is accomplished using a simple peg-in-hole experiment. Results show that the impedance control allows a faster task completion (by a factor of 2) with smaller e ort (by a factor of 20) compared with the admittance controller. A comprehensive stability analysis is also accomplished on several designs of impedance controller, but with the same macro-mini architecture. Results demonstrate that the standard impedance controller is not stable with the proposed architecture and hence an alternative controller is introduced and evaluated. A backdrivable motor is added at the mini's joint in order to render haptic feedback to the operator. Such feedback is used to simulate virtual environment interactions such as walls and collisions with movable objects. The backdrivable motor is also used to vary the impedance felt by the user during control by adding a virtual mass at the mini mechanism end-e ector. Finally, the system's dynamic analysis is used for collision detection of the macro-mini mechanism during planned trajectory motion without the need for force sensors. This last aspect is essential for safe physical human-robot interactions.
|
264 |
Motion control and physical human-robot interaction of kinematically redundant hybrid parallel robots and of a macro-mini robotic systemNguyen, Tan Sy 20 November 2023 (has links)
Thèse ou mémoire avec insertion d'articles / La thèse explore la commande en position et la commande en mode interaction physique humain-robot (pHRI) de deux systèmes robotiques, soit un robot parallèle hybride cinématiquement redondant (RPHCR) et un système robotique macro-mini. L'analyses de la cinématique et de la dynamique, ainsi que des méthodes proposées dans cette thèse pouvent être généralisés pour une famille des robots qui ont l'architecture similaire. La thèse présente d'abord un nouveau robot parallèle hybride cinématiquement redondant ayant des actionneurs rotatifs. La cinématique est dévélopée et les singularités sont examinées. L'espace de travail de translation et de rotation est ensuite analysé. De plus, un nouveau mécanisme est introduit afin d'opérer un préhenseur utilisant les degrés de liberté (ddls) redondants. Grâce à la rétrocommandamilité du robot, une loi de commande générale peut changer entre deux modes : une commande en position et une commande d'interaction humain-robot. Cette dernière est devélopée pour démontrer l'usage potentiel de RPHCR dans les application d'interaction n'ayant recours à acun capteur de force/couple. Ensuite, la commande en position des robots hybrides cinématiquement redondants est explorée. La cinématique et la dynamique des robots étudiées sont examinées en détail. Une méthode de commande hybride, qui combine la commande par couple pré-calculé dans l'espace articulaire avec une compensation cartésienne dans l'espace de la tâche est définie. La stabilité de cette commande est ensuite prouvée. Des expérimentations sont ensuite apportées sur les deux architectures. Les résultats de celles-ci sont analysées puis comparées à d'autres méthodes connues. La thèse poursuit ensuite les études au sujet d'une commande des mouvements d'un système de macro-mini. Le macro-mini combine le RPHCR et un système à pont roulant. De manière similaire, la cinématique et la dynamique du système macro-mini sont tout d'abord analysées. Par contre, cette analyse n'est réalisée que dans les coordonnées de la tâche, étant donné que la position de chaque robot a déjà été gérée par une commande séparée. Les commandes du mouvement, c'est-à-dire la commande "mid-ranging" (en anglais) et la commande prédictive, sont développées pour le robot étudié et sont généralisées pour des robots à architecture similaire. En outre, une nouvelle methode qui combine la commande PI et la résolution redondante est proposée. Enfin, chaque méthode est implémentée sur le système à des fins de comparaison. Ensuite, l'étude de la commande d'interaction est considerée sur chacune des platformes robotiques mentionnées. En considerant que le robot hybride est cinématiquement redondant, une commande amortissement-raideur est developpée pour des applications d'interaction humain-robot. D'autre part, une autre stratégie de commande est aussi analysée sur le système du macro-mini. La stabilité est examinée en détail. Puis, des expérimentations sont réalisées pour déterminer la performance de ces systèmes dans les applications d'interaction. Finalement, une conclusion est amenée afin de résumer les résultats obtenus et discuter des limitations actuelles ainsi que de présenter des travaux futurs potentiels. / This thesis investigates motion control methods and physical human robot interaction (pHRI) control strategies for two robotic systems, namely a kinematically redundant hybrid parallel robot (KRHPR) and a macro-mini system. The kinematic analysis, the dynamic modelling, as well as the control methods proposed in the thesis can be generalized for a class of robots with similar architecture. The thesis firstly introduces a novel kinematically redundant (6+3)-degree-of-freedom (DoF) spatial hybrid parallel robot with revolute actuators. The kinematic equations are developed and the singularities are examined. The translational and rotational workspace of the robot is then analysed. Also, a new mechanism is introduced to operate a gripper using the redundant DoFs. Thanks to the backdrivability of the robot, a controller - which can flexibly switch between two modes: position control and interaction control - is developed to demonstrate the potential use of this robot for physical interaction without using a force/torque sensor or joint torque sensors. Secondly, the motion control problem is investigated for a class of spatial kinematically redundant hybrid parallel robots. The kinematics are recalled and the dynamics are analysed. Based on this analysis, a proposed method referred to as hybrid control algorithm is proposed. It combines a simplified computed-torque controller, that operates in the joint space, with a Cartesian compensation, that operates in the task space of the robot. The stability of this approach is verified. Then, experiments are carried out on two example architectures. The results are examined and compared to those obtained with other methods to validate the effectiveness of the proposed approach. The motion control of a macro-mini system, which combines the hybrid parallel robot and a gantry system, is then investigated. The kinematics and the dynamics of the combined system are mainly analysed in the task space since it can be assumed that the position of the macro and the mini is stably determined by their own controllers. Motion control methods, namely mid-ranging control and Model Predictive Control, are generalized and adapted. Also, the combination of PI and the redundancy resolution is proposed. Each control method is implemented and used to perform the same trajectory. Afterwards, the control error is determined in order to compare the performance of the different methods. The physical human robot interaction is then studied for each of the robotic platforms mentioned above. On the KRHPR, a stiffness-damping control is specifically developed for pHRI applications. On the macro-mini system, the interaction method is also examined. The stability and the operational performance is analysed in detail. Experiments involving pHRI are then conducted and some demonstrations of potential applications are also presented. Finally, the conclusion summarizes the results obtained and discusses current limitations and potential future work.
|
265 |
Commande d'un robot collaboratif redondant en interaction avec des humains dans un contexte de manipulation et d'assemblageLabrecque, Pascal 04 June 2018 (has links)
Cette thèse présente deux nouvelles architectures de commande pour les interactions physiques humain-robot (pHRIs). Ces architectures sont spéciquement développées dans une vision d'implantation en industrie pour les manipulations d'assemblage. En effet, deux types de robots collaboratifs adaptés à dfférentes contraintes de l'industrie et ayant des interfaces d'interactions physiques différentes sont étudiés en utilisant chacun leur propre architecture de commande. Le premier robot collaboratif développé est un manipulateur entièrement actionné permettant des pHRIs dans son espace libre, c.-à-d., des interactions unilatérales, et des pHRIs lorsque ses mouvements sont contraints par un environnement quelconque, c.-à-d., des interactions bilatérales. Les interactions de l'humain peuvent s'effectuer sur n'importe quelles parties du robot grâce aux capteurs de couples dans les articulations. Cependant, si une amplication des forces de l'humain sur l'environnement est désirée, alors il est nécessaire d'utiliser le capteur d'efforts supplémentaire attaché au robot. Ceci permet à la commande, en combinant les lectures du capteur d'efforts à l'effecteur, d'utiliser le ratio des forces appliquées indépendamment par l'opérateur et par l'environnement an de générer l'amplication désirée. Cette loi de commande est basée sur l'admittance variable qui a déjà démontré ses bénéces pour les interactions unilatérales. Ici, l'admittance variable est adaptée aux interactions bilatérales an d'obtenir un seul algorithme de commande pour tous les états. Une loi de transition continue peut alors être dénie an d'atteindre les performances optimales pour chaque mode d'interaction qui, en fait, nécessitent chacun des valeurs de paramètres spéciques. Le cheminement et les résultats pour arriver à cette première architecture de commande sont présentés en trois étapes. Premièrement, la loi de commande est implémentée sur un prototype à un degré de liberté (ddl) an de tester le potentiel d'amplication et de transition, ainsi que la stabilité de l'interaction. Deuxièmement, un algorithme d'optimisation du régulateur pour les interactions bilatérales avec un robot à plusieurs ddls est développé. Cet algorithme vérie la stabilité robuste du système en utilisant l'approche des valeurs singulières structurées (- analysis), pour ensuite faire une optimisation des régulateurs stables en fonction d'une variable liée à la conguration du manipulateur. Ceci permet d'obtenir une loi de commande variable qui rend le système stable de façon robuste en atteignant des performances optimales peu iii importe la conguration des articulations du robot. La loi de commande trouvée utilise un séquencement de gain pour les paramètres du régulateur par admittance durant les interactions bilatérales. La stabilité et la performance du système sont validées avec des tests d'impact sur différents environnements. Finalement, la loi de commande en admittance variable optimale est implémentée et validée sur un robot manipulateur à plusieurs ddls (Kuka LWR 4) à l'aide de suivis de trajectoire pour des interactions unilatérales et bilatérales. Le deuxième robot collaboratif développé est un manipulateur partiellement actif et partiellement passif. L'architecture mécanique du robot est appelée macro-mini. Tous les degrés de liberté actionnés faisant partie du macro manipulateur sont doublés par les articulations passives du mini manipulateur. Le robot est alors sous-actionné. L'opérateur humain interagit uniquement avec le mini manipulateur, et donc, avec les articulations passives ce qui élimine tous délais dans la dynamique d'interaction. Ce robot collaboratif permet de dénir une loi de commande qui génère une très faible impédance lors des interactions de l'opérateur, et ce, même pour des charges utiles élevées. Malgré que des amplications de force ne peuvent être produites, les interactions bilatérales ont une stabilité assurée peu importe la situation. Aussi, les modes coopératif et autonome du robot utilisent les mêmes valeurs de paramètres de commande ce qui permet une transition imperceptible d'un à l'autre. La nouvelle loi de commande est comparée sur plusieurs aspects avec la commande en admittance variable précé- demment développée. Les résultats démontrent que cette nouvelle loi de commande combinée à l'architecture active-passive du macro-mini manipulateur, appelé uMan, permet des interactions intuitives et sécuritaires bien supérieures à ce qu'un système entièrement actionné peut générer. De plus, pour l'assistance autonome, une détection de collision avancée et une plani cation de trajectoire adaptée à l'architecture du robot sont développées. Des validations expérimentales sont présentées an d'évaluer la facilité à produire des manipulations nes, de démontrer la sécurité du système et d'établir la viabilité du concept en industrie. / This thesis presents two novel control architectures for physical human-robot interactions (pHRIs) which are specically designed for the assembly industry. Indeed, two types of pHRI manipulators, each adapted to different industrial constraints and with different physical interaction interfaces, are studied each with their own control architecture. The rst pHRI manipulator designed is fully actuated and allows pHRIs in its free space, i.e., unilateral interactions, as well as pHRIs when its motion is constrained by the environment, i.e., bilateral interactions. The human force input can be applied on any of the manipulator's links because of the torque sensors in the robot joints. However, if a human force amplication is desired on the environment, then it is required to use the additional force sensor appended to the robot. Using this approach, combined with the signal of the force sensor at the end effector, it is then possible to use the ratio between the human and environment forces in order to generate the desired amplication. This control law is based on the concept of variable admittance control which has already demonstrated its great benets for unilateral interactions. Here, this concept is extended to bilateral interactions in order to obtain a single control algorithm for both states. A continuous transition can thus be implemented between both interaction modes which require different parameter values in order to achieve their optimal performance. The workow and results to achieve this rst control architecture are presented in three steps. Firstly, the control law is implemented on a single-degree-of-freedom (dof) prototype in order to test the amplication and transition potential, as well as the stability of the interaction. Secondly, a control optimisation algorithm is developed for bilateral interactions with a multidof robot. This algorithm assesses the system's robust stability using the structured singular value approach (-analysis), to afterwards, optimize the stable controllers in relation to a manipulator's conguration-dependent variable. This approach leads to a variable control law yielding a robustly stable system that can reach optimal performances for any robot conguration. In fact, the admittance regulator parameters follow a gain scheduling paradigm for bilateral interactions. The stability and performance of the system are assessed using impact tests on different environments. Finally, the optimal variable admittance control law is implemented and validated on a multi-dof robot (Kuka LWR 4) using different trajectory v tracking tasks for unilateral and bilateral interactions. The second pHRI manipulator designed is partially active and partially passive. The robot's mechanical architecture is known as a macro-mini. All actuated dofs which are part of the macro manipulator are doubled with passive joints which are part of the mini manipulator. This robot is therefore underactuated. The human operator interacts solely with the mini manipulator and, thereby, solely with the passive joints which leads to an interaction dynamics free of any delay. It is possible with this pHRI manipulator to dene a control law that yields an extremely low interaction impedance, even for heavy payloads. Despite the fact that force amplication is impractical with this kind of mechanism, bilateral interactions are stable for all sorts of contact. Moreover, the robot's cooperative and autonomous modes use similar control parameter values which enables an imperceptible transition from one mode to the other. The new control law is compared on different aspects with the previously-dened variable admittance control law. Results show that this new control law combined with the active-passive macro-mini manipulator, also known as uMan, leads to intuitive and safe interactions that are considerably superior to any interaction using a fully actuated manipulator. Furthermore, for the autonomous mode, an advanced collision detection and a specicallyadapted trajectory planning are developed. Experimental validations are presented in order to assess the ease of ne manipulation, to demonstrate the system's safety, and to establish the viability of the concept for the industry.
|
266 |
Un système intelligent de planification et d'ordonnancement dédié au contexte d'ingénierie sur commandeNeumann, Anas 05 August 2024 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2023 / Les activités de planification et d'ordonnancement sont complexes et leur optimisation est cruciale pour les entreprises, particulièrement dans les réalités économiques et industrielles modernes. En effet, la forte concurrence engendrée par la globalisation du marché, l'exigence croissante des consommateurs en termes de qualité et délais, ou encore l'utilisation d'environnements technologiques fortement connectés (Industrie 4.0), motivent les entreprises à améliorer continuellement leurs approches de gestion tactique et opérationnelle (Lasi et al., 2014; Hozdić, 2015; Alcácer and Cruz-Machado, 2019). C'est particulièrement vrai pour les produits d'ingénierie sur demande, ou Engineer-To-Order (ETO). Ces produits sont souvent très complexes en termes de structure, uniques ou non-standards, et sont fabriqués sur la base de besoins incertains et d'une conception incomplète ou vouée à évoluer (Wortmann, 1983, 1992; Mather, 1999; Little et al., 2000; Jünge et al., 2021; Alfnes et al., 2021). Ils conviennent particulièrement bien aux Petites et Moyennes Entreprises (PMEs) qui voient dans ce service de personnalisation un avantage concurrentiel par rapport aux grandes organisations disposant de capacités de production plus importantes (Little et al., 2000; Kusturica et al., 2018; Zennaro et al., 2019). Cependant, la nature incertaine de ces produits rend plus difficile l'évaluation des prix, la prévision des charges et des durées, engendre du gaspillage (d'éléments achetés ou produits avant d'être modifiés ou annulés) et réduit la robustesse des ordonnancements (par nécessité de réordonnancement) (Gutfeld et al., 2014; Hooshmand et al., 2016; Bhalla et al., 2022). Afin de proposer des décisions pertinentes et de prédire avec justesse les résultats qui en découleront, un système d'aide à la décision pour la planification et l'ordonnancement dédié au contexte ETO se doit de tenir compte des spécificités de ses produits et du processus permettant leur réalisation. Par exemple, les projets ETO sont généralement exécutés en ingénierie concurrente : on produit les pièces validées sans attendre la fin de la conception du projet. De plus, contrairement aux activités de production ou d'assemblage, les étapes d'ingénierie et de design peuvent être répétées jusqu'à la validation du client, ne sont exécutées qu'une fois pour différents éléments identiques du projet, sont souvent mesurées en journées, voire semaines, et sont soumises à des règles de précédence différentes. À cet égard, cette thèse s'articule autour de la question de recherche suivante : "Par quels moyens fonctionnels, méthodologiques, technologiques et architecturaux un système d'aide à la décision pour la planification et l'ordonnancement peut-il répondre aux problématiques des PMEs liées à l'approche ETO ?" Les cinq principales problématiques visées étant (i) l'instabilité des plans et ordonnancement construits, (ii) le gaspillage (de temps, de ressources matérielles ou financières) dû aux révisions de la conception, (iii) la difficulté à satisfaire les attentes des clients en termes de coût et délais, (iv) la forte concurrence du marché industriel moderne ou encore (v) la difficulté à prédire la performance des décisions prises. À travers cette thèse, nous répondons à cette question en proposant un système intelligent de planification et d'ordonnancement dédié au contexte ETO. L'objectif étant d'obtenir un système complet et fonctionnel. Ce dernier est composé d'un modèle de données (comportant les décisions clés, les informations nécessaires à la prise de ces décisions, les métriques d'évaluation et les contraintes d'optimisation), de plusieurs modules fonctionnels reposant sur des algorithmes d'optimisation et d'apprentissage novateurs, ainsi que sur une séquence d'interactions entre ces modules pour accomplir les différents cas d'utilisation. Afin d'appréhender de manière réalisable l'atteinte de cet objectif, nous avons réparti les étapes de création du système en sept contributions scientifiques. Tout d'abord, l'architecture est composée de cinq contributions conceptuelles : (i) la conceptualisation et la modélisation mathématique du problème étudié, (ii) la proposition d'une stratégie d'ordonnancement robuste, (iii) la conception d'une méthode heuristique de résolution (algorithme génétique hybride) du problème de planification et d'ordonnancement, (iv) la conception d'une méthode de construction d'une stratégie qui incorpore les décisions de planification et d'ordonnancement dans une stratégie commerciale et prédit son impact sur plusieurs métriques (à l'aide d'un réseau de neurones artificiels), et finalement, (v) l'architecture qui regroupe ces différents éléments. Ces contributions ont été possibles à la suite de différentes analyses et revues de la littérature scientifique. Ces revues ont permis de détecter des manques à combler et de faire des choix quant aux outils et méthodes à exploiter. La nature complexe, stochastique et combinatoire des problèmes rencontrés nous a motivé à opter pour une utilisation combinée de méthodes issues de l'intelligence artificielle (apprentissage automatique, méthodes d'optimisation combinatoire et simulation). Finalement, nous avons développé un prototype de notre architecture sous la forme d'un logiciel de simulation pédagogique et gamifiée. Nos contributions ont tout d'abord été testées unitairement et quantitativement à l'aide de deux types de métriques : leur performance computationnelle (vitesse d'exécution et mémoire utilisée) et la qualité des solutions proposées (déviation de l'optimalité, qualité pratique mesurée à l'aide de scénarios aléatoires d'exécution). Les résultats publiés démontrent ainsi (i) la capacité de nos méthodes à opérer sur des projets de taille réelle et (ii) la qualité des solutions proposées. Ensuite, la réalisation du prototype a permis de tester leur intégration sous la forme d'un système complet et fonctionnel. Ce prototype a par ailleurs été utilisé dans le cadre d'un cours dispensé à l'Université Laval. / Planning and scheduling activities are difficult and significantly impact the performance of manufacturing companies. The latter are therefore forced to constantly search for optimization methods that could help improve their tactical and operational decisions. It is especially true in modern economic and industrial realities characterized by strong competition due to the globalization of the market and growing expectations for quality and short lead times (Lasi et al., 2014; Hozdić, 2015; Alcácer and Cruz-Machado, 2019). Both activities are even more challenging in the Engineer-To-Order (ETO) context. Indeed, ETO products are one-of-a-kind or highly customized and non-standard. They are often composed of a complex structure (BOM/EBOM) and their production is executed based on uncertain needs for features and an incomplete design, intended to evolve over time (Wortmann, 1983, 1992; Mather, 1999; Little et al., 2000; Jünge et al., 2021; Alfnes et al., 2021). The ETO context is very suitable for Small and Medium Enterprises (SMEs) which see this additional service of design and engineering as a competitive advantage over industries with larger production capacities (Little et al., 2000; Kusturica et al., 2018; Zennaro et al., 2019). However, producing a partially unknown product complicates the forecast of costs, workloads, or deadlines (Gutfeld et al., 2014; Hooshmand et al., 2016; Bhalla et al., 2022). ETO projects are also subject to unstable schedules (with frequent rescheduling) and waste of time and resources. To offer appropriate planning and scheduling decisions and precisely forecast their performance, decision support systems dedicated to the ETO context should consider the specificities of typical products and execution processes. For instance, ETO projects are typically executed in concurrent engineering: already validated items are produced without waiting for the complete design of the product. Besides, unlike physical operations (production and assembly), non-physical activities (design and engineering) are repeated until validated by the client; are executed once for several identical items; are measured in days or even weeks; and do not respect the same precedence relations. This thesis intends to answer the following research question: "By what functional, methodological, technological, and architectural means can a decision support system for planning and scheduling address the issues faced by SMEs due to the ETO approach?" The five main issues addressed are (i) the frequent need for rescheduling, (ii) the waste of time and resources (due to items cancellation or modification after their purchase or production), (iii) the difficulty to satisfy the client expectations in terms of cost and lead time, (iv) the strong competition of the modern industrial market, and (v) the inability to forecast the impact of the decisions. Through this thesis, we answer this question by proposing an intelligent planning and scheduling system dedicated to the ETO context. We aim to obtain a complete and operational system. Hence, its architecture is composed of a data model (including the main decisions, the mandatory data to make those decisions, the metrics to evaluate their quality, and the optimization constraints), several business modules based on innovative optimization and learning algorithms, and the sequence of interactions needed to accomplish the different use cases. We then divided the different steps needed to answer the research question into seven achievable scientific contributions. First, the technical components of our architectures represent the five main contributions: (i) a mathematical model representing the studied problem, (ii) a robust planning and scheduling strategy, (iii) a hybrid genetic algorithm able to solve a real-sized instance of the problem, (iv) a prediction model, based on artificial neural networks, to build a complete commercial strategy incorporating the planning and scheduling decisions and forecasting its performance, and (v) the software architecture. Our contributions were possible only after various analyses and literature reviews. Those reviews allowed us to notice gaps regarding our context and make informed choices. To overcome the complex, stochastic, and combinatorial nature of the problems encountered, we opted for a combined use of methods linked to Artificial Intelligence (heuristic optimization, machine learning, and simulation). Finally, we implemented a prototype of our system as a gamified software dedicated to learning purposes. We first tested our contributions separately (unit tests) using two types of quantitative metrics: the computational performance (computing time and memory used) and the quality of the proposed solutions (deviation, impact of randomly generated scenarios). The results highlighted the capacity of our methods to solve realistic instances and the impact of our planning and scheduling strategy. Then, our prototype of implementation allowed us to validate their viable integration as a complete system. Our prototype has also been tested and used as part of a course given at Université Laval.
|
267 |
Caractérisation d'un miroir déformable à ferrofluide à réponse linéaireNaderiyanha, Azadeh 18 April 2018 (has links)
Le concept de miroir déformable à base de liquide magnétique (ferrofluide) a énormément contribué à la technologie des miroirs déformables. Les miroirs déformables à ferrofluide (MDFs) permettent des déformations qui peuvent varier de quelques nanometres jusqu'à quelques millimètres, ce qui est largement supérieur à ce que les miroirs déformables commerciaux peuvent produire. Toutefois, un inconvénient majeur de ces MDFs est leur réponse non linéaire. Une nouvelle technique qui permet de surmonter ce problème est de superposer un champ magnétique constant et uniforme au champ magnétique produit par les action-neurs. Nous avons fabriqué un MDF à 91 actionneurs qui utilise cette nouvelle technique de linéarisation. Les performances obtenues sont comparables à celles des miroirs déformables disponibles commercialement. Les premiers 36 polynômes de Zernikes ont été produits en utilisant ce miroir et, basés sur nos mesures, nous prévoyons des amplitude maximales sur le front d'onde qui peuvent atteindre plus de 70 [mu]m. La combinaison linéaire de polynômes de Zernike, la reproductibilité au fil du temps, ainsi que l'application de ce MDF à compenser les aberrations de l'oeil humain est présentée.
|
268 |
Stratégies de commande pour la navigation autonome d'un drone projectile miniatureDrouot, Adrien 02 December 2013 (has links) (PDF)
De nos jours, l'utilisation des drones miniatures à voilure tournante pour des missions d'observation dans des environnements hostiles est en pleine expansion. Ces appareils, grâce à leurs capacités à combiner le vol de translation avec le vol stationnaire, sont en eff et bien adaptés aux besoins de ces missions. L'étude présentée dans cette thèse concerne un nouveau concept de drone appelé GLMAV (pour Gun Launched Micro Aerial Vehicle), qui consiste à rendre très rapidement opérationnel un véhicule hybride projectile - drone. La di fficulté dans le pilotage de ce type de véhicules est d'assurer de bonnes performances de suivi de trajectoires tout en garantissant une résistance aux perturbations aérodynamiques. Après une étape de modélisation, le cœur de la thèse présente plusieurs stratégies de commande, aussi bien linéaires que non linéaires, permettant la navigation autonome du drone. Plusieurs approches permettant l'estimation et la prise en compte dans la commande des eff orts parasites liés aux phénomènes aérodynamiques sont également détaillées. L'e fficacité de tous les algorithmes de commande est ensuite illustrée par de nombreuses simulations numériques. Du point de vue pratique, une simple loi de commande ne suffi t pas. En eff et, des techniques de filtrage particulières ou des aménagements spécifi ques doivent être utilisés pour reconstruire l'état du drone. Les performances de l'ensemble de la boucle de commande sont d'abord testées en simulation avant l'implantation sur le prototype du GLMAV développé par l'Institut franco-allemand de recherches de Saint-Louis.
|
269 |
Méthodes pour le guidage coopératif.Rochefort, Yohan 09 September 2013 (has links) (PDF)
L'objectif de cette thèse est de définir puis d'étudier les performances de méthodes de guidage coopératif de véhicules aériens autonomes. L'intérêt du guidage coopératif est de confier une mission complexe à une flotte, plutôt qu'à un véhicule unique, afin de distribuer la charge de travail et d'améliorer les performances et la fiabilité. Les lois de guidage étudiées sont distribuées sur l'ensemble des véhicules afin d'une part, de répartir la charge de calcul et d'autre part, d'augmenter la fiabilité en éliminant la possibilité de perte de l'organe central de calcul de la commande.La première partie de la thèse porte sur les possibilités offertes par la règle des plus proches voisins. La loi de guidage développée consiste à ce que la commande de chaque véhicule soit élaborée en combinant les états des véhicules voisins. Afin de transmettre des consignes au groupe de véhicules, des objets dénommés agents virtuels sont introduits. Ceux-ci permettent de représenter des obstacles, d'indiquer une direction ou une cible au groupe de véhicules en utilisant des mécanismes déjà présent dans la loi de guidage.La seconde partie de la thèse porte sur les possibilités offertes par la commande prédictive. Ce type de commande consiste à employer un modèle du comportement du système afin de prédire les effets de la commande, et ainsi de déterminer celle qui minimise un critère de coût en respectant les contraintes du système. La loi de guidage développée emploi un critère de coût tenant compte et arbitrant entre les différents aspects de la mission (sécurité, progression de la mission, modération de la commande), et une procédure de recherche de la commande utilisant jeu prédéfinis de commandes candidates afin d'explorer l'espace de commande de manière efficace. Cette procédure, distincte des algorithmes d'optimisation habituels, génère une charge de calcul faible et constante, ne nécessite pas d'étape d'initialisation et est très peu sensible aux minima locaux.
|
270 |
Techniques de robustesse et d'auto-séquencement pour la commande auto-adaptative des aéronefs / Robust gain scheduling techniques for adaptive controlAntoinette, Patrice, Luc 15 June 2012 (has links)
Pour synthétiser un correcteur robuste pour un système linéaire incertain, il existe de nombreuses méthodes linéaires. Cependant, bien souvent, le gain en robustesse se fait au détriment de la performance. Aussi, dans cette thèse, on s'intéresse à la situation où la plage des valeurs possibles des paramètres est "très grande" par rapport à la "faible" variation du niveau de performance souhaité. Dans cette situation, il peut alors s'avérer intéressant d'utiliser des correcteurs séquencés. Seulement, la mise en place de cette solution nécessite que le correcteur ait à sa disposition les paramètres sur lesquels il sera séquencé. Et il peut arriver que l'on ne souhaite pas (à cause de considérations de réalisation pratique), ou que l'on ne puisse pas disposer de la mesure de ces paramètres. On est alors amené à estimer ces paramètres et donc à utiliser le paradigme de la commande adaptative. Dans cette thèse, on cherche à proposer une méthodologie de synthèse d'un correcteur auto-adaptatif afin de résoudre un problème de commande robuste d'un procédé linéaire incertain. Après une étude théorique ayant pour objectif de proposer une telle méthodologie, le cas d'un avion instable est traité à titre d'application, permettant ainsi de mettre en évidence le bénéfice que la stratégie proposée peut apporter à la commande d'un système incertain. / Many linear methods exist to design a robust controller for an uncertain linear system. This thesis considered the situation where the range of possible values of parameters is "very large" in relation to "small" variations in the desired level of performance. Frequently, an increase in robustness is obtained at the expense of a performance loss. The use of scheduled controllers may be an innovative way to address this problem. The implementation of this solution requires the controller has at its disposal the parameters on which the scheduling is done. However, it may occur that making the measure of the parameters available is not desired (for example, because of practical implementation aspects) or not possible. In these situations, the designer of the controller is led to estimate these parameters and then to use the paradigm of adaptive control. This thesis explored a methodology for designing an adaptive controller in which to solve the problem of robust control for an uncertain linear plant. A theoretical study was first undertaken which aimed to propose such a methodology; followed by, a study of the case of an unstable airplane as an application. Such an analysis highlighted the benefits that the proposed strategy can bring to the control for an uncertain plant.
|
Page generated in 0.0223 seconds