• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 155
  • 54
  • 17
  • 5
  • 5
  • 2
  • 2
  • Tagged with
  • 266
  • 266
  • 59
  • 55
  • 53
  • 52
  • 50
  • 37
  • 36
  • 34
  • 34
  • 31
  • 27
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Advanced Traffic Service / Avancerad Trafiktjänst

Löfås, Peter January 2005 (has links)
<p>More and more travellers use navigation-aid software to find the way while driving. Most of todays systems use static maps with little or no information at all about currently yeilding roads conditions and disturbances in the network. It is desirable for such services</p><p>in the future to include information about road works, accidents, surface conditions and other types of events that affects what route is currently the best.</p><p>It is also desirable to notify users about changes in the prerequisites of the chosen route after they have started their trip.</p><p>This thesis investigates methods to include dynamic traffic information in route calculations and notifying users when the characteristics change for their chosen route.</p><p>The thesis utilizes dynamic traffic information from The Swedish Road Agencys (Vägverket) central database for traffic information, TRISS and calculates affected clients with help of positioning through the GSM network.</p>
142

Optically Selective Surfaces in low concentrating PV/T systems / Optiskt selektiva ytor i lågkoncentrerande PV/T-system

Morfeldt, Johannes January 2009 (has links)
<p>One of the traditional approaches to reduce costs of solar energy is to use inexpensive reflectors to focus the light onto highly efficient solar cells. Several research projects have resulted in designs, where the excess heat is used as solar thermal energy.</p><p>Unlike a solar thermal system, which has a selective surface to reduce the radiant heat loss, a CPV/T (Concentrating PhotoVoltaic/Thermal) system uses a receiver covered with solar cells with high thermal emittance.</p><p>This project analyzes whether the heat loss from the receiver can be reduced by covering parts of the receiver surface, not already covered with solar cells, with an optically selective coating. Comparing different methods of applying such a coating and the long-term stability of low cost alternatives are also part of the objectives of this project.</p><p>To calculate the heat loss reductions of the optically selective surface coating a mathematical model was developed, which takes the thermal emittances and the solar absorptances of the different surfaces into account. Furthermore, a full-size experiment was constructed to verify the theoretical predictions.</p><p>The coating results in a heat loss reduction of approximately 20 % in such a CPV/T system and one of the companies involved in the study is already changing their design to make use of the results.</p>
143

Theoretical investigation of the first-order hyperpolarizability in the two-photon resonant region / Teoretisk undersökning av andra ordningens susceptibilitet i det tvåfotonresonanta området

Bergstedt, Mikael January 2007 (has links)
Time-dependent density functional theory calculations have been carried out to determine the complex first-order hyperpolarizability in the two-photon resonance region of the molecule IDS-Cab. Calculations show that three strongly absorbing states, in the ultraviolet region, are separated to the extent that no significant interference of the imaginary parts of the tensor elements of the first-order hyper-polarizability occurs. Consequently, and in contrast to experimental findings [27], no reduced imaginary parts of the first-order hyperpolarizability in the two-photon resonant region can be seen.
144

Quantum transport and spin effects in lateral semiconductor nanostructures and graphene

Evaldsson, Martin January 2008 (has links)
This thesis studies electron spin phenomena in lateral semi-conductor quantum dots/anti-dots and electron conductance in graphene nanoribbons by numerical modelling. In paper I we have investigated spin-dependent transport through open quantum dots, i.e., dots strongly coupled to their leads, within the Hubbard model. Results in this model were found consistent with experimental data and suggest that spin-degeneracy is lifted inside the dot – even at zero magnetic field. Similar systems were also studied with electron-electron effects incorporated via Density Functional Theory (DFT) in the Local Spin Density Approximation (LSDA) in paper II and III. In paper II we found a significant spin-polarisation in the dot at low electron densities. As the electron density increases the spin polarisation in the dot gradually diminishes. These findings are consistent with available experimental observations. Notably, the polarisation is qualitatively different from the one found in the Hubbard model. Paper III investigates spin polarisation in a quantum wire with a realistic external potential due to split gates and a random distribution of charged donors. At low electron densities we recover spin polarisation and a metalinsulator transition when electrons are localised to electron lakes due to ragged potential profile from the donors. In paper IV we propose a spin-filter device based on resonant backscattering of edge states against a quantum anti-dot embedded in a quantum wire. A magnetic field is applied and the spin up/spin down states are separated through Zeeman splitting. Their respective resonant states may be tuned so that the device can be used to filter either spin in a controlled way. Paper V analyses the details of low energy electron transport through a magnetic barrier in a quantum wire. At sufficiently large magnetisation of the barrier the conductance is pinched off completely. Furthermore, if the barrier is sharp we find a resonant reflection close to the pinch off point. This feature is due to interference between a propagating edge state and quasibond state inside the magnetic barrier. Paper VI adapts an efficient numerical method for computing the surface Green’s function in photonic crystals to graphene nanoribbons (GNR). The method is used to investigate magnetic barriers in GNR. In contrast to quantum wires, magnetic barriers in GNRs cannot pinch-off the lowest propagating state. The method is further applied to study edge dislocation defects for realistically sized GNRs in paper VII. In this study we conclude that even modest edge dislocations are sufficient to explain both the energy gap in narrow GNRs, and the lack of dependance on the edge structure for electronic properties in the GNRs.
145

Compressible Turbulent Flows : LES and Embedded Boundary Methods

Kupiainen, Marco January 2009 (has links)
QC 20100726
146

Wave Transport and Chaos in Two-Dimensional Cavities / Vågtransport och Kaos i Tvådimensionella Kaviteter

Wahlstrand, Björn January 2008 (has links)
This thesis focuses on chaotic stationary waves, both quantum mechanical and classical. In particular we study different statistical properties regarding thesewaves, such as energy transport, intensity (or density) and stress tensor components. Also, the methods used to model these waves are investigated, and somelimitations and specialities are pointed out.
147

Advanced Traffic Service / Avancerad Trafiktjänst

Löfås, Peter January 2005 (has links)
More and more travellers use navigation-aid software to find the way while driving. Most of todays systems use static maps with little or no information at all about currently yeilding roads conditions and disturbances in the network. It is desirable for such services in the future to include information about road works, accidents, surface conditions and other types of events that affects what route is currently the best. It is also desirable to notify users about changes in the prerequisites of the chosen route after they have started their trip. This thesis investigates methods to include dynamic traffic information in route calculations and notifying users when the characteristics change for their chosen route. The thesis utilizes dynamic traffic information from The Swedish Road Agencys (Vägverket) central database for traffic information, TRISS and calculates affected clients with help of positioning through the GSM network.
148

Étude par simulation numérique des propriétés diélectriques d'hétérostructures multiphasiquescontenant des inclusions de forme arbitraire

Mejdoubi, Abdelilah 20 June 2007 (has links) (PDF)
Ce travail porte sur la modélisation numérique des propriétés diélectriques de matériaux composites modèles à deux et trois phases comportant des inclusions de forme arbitraire. Deux approches numériques basées sur la méthode des éléments finis (FE) et celle des différences finies dans le domaine temporel (FDTD) sont implantées et validées. Dans un premier temps nous décrivons une méthode de simulation FDTD pour étudier l'influence de la géométrie de l'inclu- sion sur les propriétés diélectriques effectives d'une structure hétérogène non-dissipative bidimensionnelle à deux phases. Nous avons spécifiquement considéré une géométrie fractale de l'inclusion et examinons les conséquences de la symé- trie d'auto-similarité sur la permittivité du matériau composite. Dans un deuxième temps, nous utilisons une méthode de simulation FE permettant le calcul de la permittivité effective complexe de structures bidimensionnelles perforées. Ces calculs permettent d'apporter un éclairage innovant sur le rôle des différents paramètres (fraction surfacique et périmètre de l'inclusion, contraste de permittivité entre l'inclusion et la matrice hôte, pertes diélectriques, et forme des trous) in- fluençant la permittivité effective. Nous montrons également que le facteur de dépolarisation d'une inclusion dans une structure composite peut être finement ajusté selon la forme de l'inclusion, le contraste de permittivité entre l'inclusion et la matrice, ainsi que par la polarisation du champ électrique. L'originalité de la méthode est de mettre à profit le carac- tère dipolaire des interactions électrostatiques dans la limite diluée. Les propriétés diélectriques de matériaux artificiels (métamatériaux) sont également analysées afin d'en isoler des comportements spécifiques. Nous montrons que la forme de l'inclusion influe sur la position de la résonance électrostatique (RE). Selon la forme de l'inclusion, son arrangement dans le composite (isolée, ou structurée en réseau), ses paramètres intrinsèques, nous mettons en évidence une hiérarchie originale des positions de la RE. Enfin à l'aide de structures encapsulées, nous montrons qu'un contrôle précis des pro- priétés de RE de structures de type métamatériaux (permittivité dont la partie réelle est négative) peut être réalisé par la polarisation du champ excitateur et la topologie de l'inclusion. L'ensemble de ces résultats numériques permet d'apporter un éclairage innovant sur la réponse diélectrique de matériaux composites à la base d'un très grand nombre d'application technologiques.
149

Theoretical investigation of the first-order hyperpolarizability in the two-photon resonant region / Teoretisk undersökning av andra ordningens susceptibilitet i det tvåfotonresonanta området

Bergstedt, Mikael January 2007 (has links)
<p>Time-dependent density functional theory calculations have been carried out to determine the complex first-order hyperpolarizability in the two-photon resonance region of the molecule IDS-Cab. Calculations show that three strongly absorbing states, in the ultraviolet region, are separated to the extent that no significant interference of the imaginary parts of the tensor elements of the first-order hyper-polarizability occurs. Consequently, and in contrast to experimental findings [27], no reduced imaginary parts of the first-order hyperpolarizability in the two-photon resonant region can be seen.</p>
150

Computational Approaches to Simulation and Analysis of Large Conformational Transitions in Proteins

January 2017 (has links)
abstract: In a typical living cell, millions to billions of proteins—nanomachines that fluctuate and cycle among many conformational states—convert available free energy into mechanochemical work. A fundamental goal of biophysics is to ascertain how 3D protein structures encode specific functions, such as catalyzing chemical reactions or transporting nutrients into a cell. Protein dynamics span femtosecond timescales (i.e., covalent bond oscillations) to large conformational transition timescales in, and beyond, the millisecond regime (e.g., glucose transport across a phospholipid bilayer). Actual transition events are fast but rare, occurring orders of magnitude faster than typical metastable equilibrium waiting times. Equilibrium molecular dynamics (EqMD) can capture atomistic detail and solute-solvent interactions, but even microseconds of sampling attainable nowadays still falls orders of magnitude short of transition timescales, especially for large systems, rendering observations of such "rare events" difficult or effectively impossible. Advanced path-sampling methods exploit reduced physical models or biasing to produce plausible transitions while balancing accuracy and efficiency, but quantifying their accuracy relative to other numerical and experimental data has been challenging. Indeed, new horizons in elucidating protein function necessitate that present methodologies be revised to more seamlessly and quantitatively integrate a spectrum of methods, both numerical and experimental. In this dissertation, experimental and computational methods are put into perspective using the enzyme adenylate kinase (AdK) as an illustrative example. We introduce Path Similarity Analysis (PSA)—an integrative computational framework developed to quantify transition path similarity. PSA not only reliably distinguished AdK transitions by the originating method, but also traced pathway differences between two methods back to charge-charge interactions (neglected by the stereochemical model, but not the all-atom force field) in several conserved salt bridges. Cryo-electron microscopy maps of the transporter Bor1p are directly incorporated into EqMD simulations using MD flexible fitting to produce viable structural models and infer a plausible transport mechanism. Conforming to the theme of integration, a short compendium of an exploratory project—developing a hybrid atomistic-continuum method—is presented, including initial results and a novel fluctuating hydrodynamics model and corresponding numerical code. / Dissertation/Thesis / Doctoral Dissertation Physics 2017

Page generated in 0.0319 seconds