• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 297
  • 59
  • 16
  • 8
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 349
  • 349
  • 349
  • 78
  • 64
  • 47
  • 46
  • 40
  • 40
  • 40
  • 39
  • 36
  • 34
  • 32
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Genomic instability and DNA mismatch repair gene mutations in colorectal cancer

陳俊良, Chan, Tsun-leung. January 1999 (has links)
published_or_final_version / Pathology / Doctoral / Doctor of Philosophy
112

Expression of Wnt signaling targets and their clinico-pathological significance in colorectal neoplasm: a tissuemicroarray study

Guo, Dongli., 郭冬麗. January 2006 (has links)
published_or_final_version / Pathology / Doctoral / Doctor of Philosophy
113

BRAF mutation and aberrant methylation of gene promoters in the pathogenesis of gastrointestinal tract adenocarcinoma

Zhao, Wei, 趙煒 January 2006 (has links)
published_or_final_version / abstract / Pathology / Doctoral / Doctor of Philosophy
114

High resolution mapping of loss of heterozygosity and chromosomal aberrations using oligonucleotide single nucleotide polymorphismgenotyping arrays in colorectal adenoma to carcinoma progression

Wong, Chi-wai, 黃志偉 January 2006 (has links)
published_or_final_version / abstract / Pathology / Master / Master of Philosophy
115

Molecular mechanisms of autophagy mediated by silencing of EEF2K in colon cancer cells / CUHK electronic theses & dissertations collection

January 2014 (has links)
Eukaryotic translation elongation factor-2 (EEF2) is regulated through phosphorylation by a specific kinase known as eukaryotic elongation factor-2 kinase (EEF2K), leading to translational down regulation. Currently, it has been reported that EEF2K could promote the autophagic survival in breast and glioblastoma cell lines. However, the precise function of EEF2K in cancer as well as the related mechanism is still poorly understood. Colorectal cancer is the third common malignant disease worldwide and more than half of the patients with colorectal cancer require chemotherapy after surgery. However, de novo or acquired resistance to the agents is common. Discovery of novel targets for the chemotherapeutic intervention or treatment of colorectal cancer is highly warranted. In this study, the role of EEF2K as well as the underlying mechanism involved was evaluated in HT-29 and HCT-116 human colon cancer cells. Contrary to the reported autophagy-promoting activity of EEF2K in certain cancer cells, EEF2K is shown to negatively regulate autophagy in colon cancer cells as indicated by the increase of LC3-II levels, the accumulation of LC3 dots per cell, and the promotion of autophagic flux in EEF2K silenced cells. Moreover, the silencing of EEF2K promotes the cell viability, clonogenicity, cell proliferation and cell size in colon cancer cells. The silencing of BECN1 and ATG7 significantly reduce silencing of EEF2K induced LC3-II accumulation and cell survival. However, autophagy induced by EEF2K silencing does not potentiate the anticancer efficacy of the AKT inhibitor MK-2206. In addition, EEF2K overexpression decreases the cell survival and potentiates the antitumor efficacy of oxaliplatin. Autophagy induced by silencing of EEF2K is attributed to induction of protein synthesis, which results in ATP consumption and then actives AMPK-ULK1 pathway. This process appears independent of the suppression of MTOR activity and ROS generation. Silencing of AMPK or ULK1 significantly decreases EEF2K silencing-induced autophagy as well as cell survival in colon cancer cells. In conclusion, EEF2K negatively regulates autophagic survival through the AMPK-ULK1 pathway in colon cancer cells. This study provide useful information in understanding the role of EEF2K in colon cancer cells and suggests that upregulation of EEF2K activity may be developed a novel approach for the treatment of human colon cancer. / 真核延伸因子2激酶 (EEF2K) 通過磷酸化修飾真核延伸因子2 (EEF2) 來調控其活性,進而下調蛋白質翻譯延伸的速度。目前,有研究表明在乳腺癌和多形性膠質母細胞瘤中,EEF2K能夠誘導細胞自噬,並且這種類型的細胞自噬有助於細胞生存。然而,對於EEF2K在腫瘤中的精確作用以及它所涉及的分子機理仍然知之甚少,有待於進一步的研究。結直腸癌是全球第三大惡性腫瘤疾病,約有半數以上的患者需要手術後進行化學藥物治療。然而,患者對目前已有藥物的耐藥性十分普遍,因此,研發新的化學藥物靶點或者新的治療方法十分必要。在本課題研究中,EEF2K的功能及其所涉及的分子機理在人結腸癌細胞系HT-29和HCT-116上進行了闡釋。與在某些特定種類腫瘤細胞中EEF2K能夠誘導細胞自噬產生的現象相反,在EEF2K表達下調的人結腸癌細胞中,細胞自噬標記物LC3-II表達上升, 細胞中LC3斑點的聚集增多,並且細胞自噬流增強的現象,都表明EEF2K在這類腫瘤細胞中負調控細胞自噬。在結腸癌細胞中,EEF2K表達下調能夠增強細胞的活力,單細胞克隆的形成,細胞增殖以及細胞大小。此外,沈默BECN1和ATG7基因的表達都能夠減少EEF2K下調引發的LC3-II積累以及細胞增殖。然而,降低EEF2K表達所引發的細胞自噬並不能夠增強AKT抑制劑MK-2206抗腫瘤的效果。EEF2K的過表達能夠減少細胞增殖並且加強oxaliplatin的抗腫瘤藥效。沈默EEF2K引發的細胞自噬是通過誘導蛋白質的合成,導致ATP的消耗進而激活AMPK-ULK1細胞通路,與MTOR活性的抑制及ROS的產生無關。在結腸癌細胞中,降低AMPK或者ULK1的表達能夠消除EEF2K沈默所引起的LC3-II表達升高,細胞中LC3斑點聚集增多以及細胞增殖加強等現象。綜上所述,在人結腸癌細胞中,沈默EEF2K基因表達能夠通過激活AMPK-ULK1細胞通路,誘導有助於細胞存活的自噬現象產生。本課題研究對理解EEF2K在結腸癌細胞中的功能提供了有用的信息並且表明增強EEF2K的活性可以作為一種潛在的新的治療人結腸癌的方法。 / Liu, Xiaoyu. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2014. / Includes bibliographical references (leaves 116-131). / Abstracts also in Chinese. / Title from PDF title page (viewed on 16, November, 2016). / Detailed summary in vernacular field only.
116

Novel recurrent point mutation and gene fusion identified by new generation sequencing in colorectal cancer. / CUHK electronic theses & dissertations collection

January 2013 (has links)
He, Jun. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 136-156). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
117

A novel amplification gene SLC12A5 promotes cell proliferation and tumor metastasis in colorectal cancer / CUHK electronic theses & dissertations collection

January 2014 (has links)
Background & Aims: By whole genome sequencing, we identified for the first time that solute carrier family 12 member 5 (SLC12A5) gene located on chromosome 20q13.12 was amplified in colorectal cancer (CRC). We aimed to determine the amplification status of SLC12A5 and its clinical implication in CRC, and characterize the functional mechanisms of SLC12A5 in colorectal carcinogenesis. / Materials and Methods: Protein expression level of SLC12A5 was evaluated by immunohistochemistry. SLC12A5 amplification was verified by fluorescence in situ hybridization (FISH). The correlations between SLC12A5 expression and clinicopathologic parameters as well as the prognosis impact of SLC12A5 were analyzed in 195 CRC patients. The biological function of SLC12A5 in CRC cell lines were determined by cell viability, colony formation, invasion, migration, flow cytometry and in vivo tumorigenicity assays. Standard tail vein metastatic assay was performed to examine the effect of SLC12A5 in lung metastasis in nude mice. Western blot, luciferase reporter assays and human tumor metastasis PCR array were performed to evaluate SLC12A5 downstream effectors and related pathways. / Results: RT-PCR showed SLC12A5 was readily expressed in 7 of 9 CRC cell lines, but was absent in normal colorectal tissues. The mean protein expression level of SLC12A5 was significantly higher in primary CRCs as compared to their adjacent normal tissues. Amplification of SLC12A5 was detected in 40.8% (78/191) of primary CRCs by FISH, which was positively correlated with its protein overexpression (P < 0.001). Overexpression of SLC12A5 was positively associated with a more advanced TNM stage (P < 0.05). Multivariate Cox regression analysis showed that SLC12A5 overexpression was an independent predictor of poorer survival of CRC patients (P = 0.018). We further tested the biological function of SLC12A5 in human colon cancer cells. Ectopic expression of SLC12A5 in colon cancer cells SW480 and SW1116 increased proliferation and colony formation. Silencing SLC12A5 expression in HCT116 by siRNA had the opposite effects in vitro, and knockdown of SLC12A5 by shRNA significantly inhibited xenograft tumor growth in nude mice. We further revealed that SLC12A5 inhibited apoptosis of colon cancer cells by mediating apoptosis-inducing factor (AIF) and endonuclease G (EndoG) -dependent apoptotic signaling pathway. Moreover, gain-and loss-of-function experiments showed that SLC12A5 enhanced cell invasion and migration in vitro. Knockdown of SLC12A5 by shRNA significantly inhibited lung metastasis in nude mice. SLC12A5 promoted tumor metastasis through regulating key elements of the matrix architecture, such as matrix metallopeptidase and fibronectin. / Conclusion: We have identified a novel amplification gene SLC12A5 which is overexpressed in CRC. SLC12A5 may be an independent prognostic marker for CRC and may play a pivotal oncogenic role in colorectal carcinogenesis by inhibiting apoptosis and promoting metastasis. / 背景和目的:通過對結直腸癌進行全基因組測序,我們首次發現位於染色體20q13.12的SLC12A5基因在結直腸中擴增。本研究旨在探索SLC12A5在結直腸癌中的擴增情況和臨床意義,并進一步研究SLC12A5在結直腸癌發生發展中的作用機制。 / 材料和方法:採用免疫组化方法檢測SLC12A5的蛋白表达水平。應用熒光原位雜交方法驗證SLC12A5基因的擴增情況。在195例結直腸癌患者中对SLC12A5表达與临床病理關係及其對預後的影響其进行分析。通过檢測細胞活力、細胞集落形成實驗、侵襲實驗、遷移實驗、流式細胞術和體內成瘤實驗以研究SLC12A5在結直腸癌中的生物学功能。進而通過免疫印跡、熒光素酶報告實驗和人腫瘤轉移的PCR陣列,探索SLC12A5調控的基因和相关途径。 / 结果:我們採用RT-PCR方法檢測SLC12A5在9株結直腸癌細胞株的表達情況,SLC12A5在7株結直腸癌細胞株中穩定表達,但是在正常大腸組織中表達沉默。SLC12A5在結直腸中的平均蛋白表達水平顯著高於其鄰近的正常組織。通過熒光原位雜交方法,在40.8% (78/ 191)的結直腸癌中檢測到SLC12A5的擴增,該基因的擴增與其蛋白高表達水平呈正相關關係。SLC12A5高表達水平跟晚期TNM分期密切相關(P <0.05)。多因素Cox回歸分析表明,SLC12A5高表達是結直腸癌患者較差的生存的獨立預測因子(P = 0.018)。我們進一步在人結腸癌細胞株中檢測SLC12A5的生物功能。在結腸癌細胞SW480和SW1116中過度表達SLC12A5促進細胞增殖和集落形成。siRNA敲低HCT116 細胞SLC12A5的表達在體外實驗中有相反的效果。此外,shRNA敲低SLC12A5的表達顯著抑制裸鼠移植瘤的生長。我們進一步發現,SLC12A5通過介導凋亡誘導因子(AIF)和核酸內切酶G(EndoG)-依賴的細胞凋亡信號轉導通路抑制結腸癌細胞的凋亡。此外,功能獲得性和功能缺失性的體外實驗表明,SLC12A5促進腫瘤細胞的侵襲和遷移。尾靜脈注射實驗表明shRNA敲低SLC12A5的表達顯著抑制裸鼠肺轉移。SLC12A5通過調節基質結構的關鍵因子,如基質金屬蛋白酶和纖維連接蛋白,促進腫瘤轉移。 / 结论:我們發現了一個新的擴增基因SLC12A5,該基因在結直腸癌中高表達。SLC12A5是結直腸癌的一個獨立的預後標誌物。SLC12A5通過抑制細胞凋亡和促進腫瘤轉移,在結直腸癌的發生發展中起了舉足輕重的致癌作用。 / Xu, Lixia. / Thesis Ph.D. Chinese University of Hong Kong 2014. / Includes bibliographical references (leaves 107-120). / Abstracts also in Chinese. / Title from PDF title page (viewed on 05, October, 2016). / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only.
118

Expression of the DNA mismatch repair protein MLH1 in serrated polyps of the colon: an immunohistochemical study

Chan, Ling-fung., 陳凌鋒. January 2005 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
119

Role of BRCA1 in stress-induced autophagy in breast and ovarian cancercells

Tang, Kei-shuen., 鄧紀旋. January 2011 (has links)
published_or_final_version / Biological Sciences / Master / Master of Philosophy
120

Investigation of transcript expression of PRKAR2A, DUSP1, STMN2 and MAPT genes in nasopharyngeal carcinoma, ovarian cancer and benignovarian tumor

Tong, Tin-wing., 唐天穎. January 2011 (has links)
published_or_final_version / Pathology / Master / Master of Medical Sciences

Page generated in 0.0725 seconds