• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 10
  • 4
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 19
  • 14
  • 11
  • 11
  • 11
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

PHARMACOLOGICAL TARGETING OF FGFR IN METASTATIC BREAST CANCER IS AUGMENTED BY DNMT1 INHIBITION

Mitchell G Ayers (18990533) 02 August 2024 (has links)
<p dir="ltr">Metastatic breast cancer (BC) remains a dauting therapeutic challenge due to the heterogeneity and cellular plasticity that exists. Because of these, BC resistance to targeted therapies and immune checkpoint blockade (ICB) present major challenges in the clinical setting. As a result, incomplete clearance of BC during a therapeutic regimen can lead to the persistence of minimal residual disease (MRD) which greatly contributes to tumor relapse. Here we develop a powerful in vivo model of lung metastasis in which we can achieve robust pulmonary tumor regression in response to the fibroblast growth factor receptor (FGFR) inhibitor, pemigatinib.</p><p dir="ltr">To enhance the efficacy of ICB, tumors must first be converted from an immune “cold” environment to an immune “hot” environment. Using our in vivo model of lung metastasis, we demonstrated that pemigatinib can significantly increase the presence of infiltrating T-cells into the lungs while suppressing the presence of MDSCs both locally in the lungs and systemically. Taken together, pemigatinib is an ideal candidate to prime these immune “cold” tumors for combination with ICB.</p><p dir="ltr">Upon establishment of MRD by pemigatinib in our in vivo model we observe upregulation of an alternate growth factor receptor, platelet-derived growth factor receptor (PDGFR). Functionally, upon FGFR inhibition, there is increased response to pulmonary fibroblast derived PDGF ligand, fueling survival of MRD. We demonstrated that knockdown of PDGFR significantly delayed tumor growth reinitiation in an in vitro 3D culture following pemigatinib as well as delayed tumor relapse in our pulmonary metastasis model.</p><p dir="ltr">To limit cellular plasticity and reduce survival of MRD, we propose a novel dual-targeted approach utilizing pemigatinib, in conjunction with inhibition of DNMT1 using the reversible inhibitor GSK3484862. We used our in vivo model of lung metastasis after treatment with pemigatinib as a model of cellular plasticity to targeted therapy. This combination therapy prevented growth factor plasticity and delayed tumor recurrence. Through prevention of PDGFR upregulation induced by pemigatinib.</p><p dir="ltr">In the present dissertation works, our study demonstrates pemigatinib’s robust ability to increase infiltrating T-cells in addition to its strong antitumor effects on pulmonary tumors. Despite the robust effects of pemigatinib, acquired mechanism of resistance through upregulation of PDGFR allows survival of MRD and are supported by PDGF secreting fibroblasts. Using an approach of limiting cellular plasticity through DNA methylation inhibition combined with pemigatinib, we achieved a more durable therapeutic response. Our findings underscore the significance of understanding adaptive responses to targeted therapies and provide a tangible therapeutic strategy to prolong treatment response in metastatic breast cancer.</p>
32

Mesoporous Silica Nanoparticles Targeting Tumor Microenvironment as a Tool for Breast Cancer Treatment

Trigo Lameirinhas, Ana Catarina 13 September 2025 (has links)
[ES] La mayoría de las terapias contra el cáncer de mama que se utilizan actualmente en la práctica clínica se centran en atacar las células tumorales. Sin embargo, los nuevos avances en el campo de la inmunología han resaltado el papel principal del microambiente tumoral en la modulación tumoral. Específicamente, los fibroblastos asociados al cáncer desempeñan un papel importante en la progresión tumoral, la modulación de la inmunidad tumoral y la resistencia a la terapia. Por ello, esta tesis doctoral titulada "Nanopartículas de sílice mesoporosas dirigidas al microambiente tumoral como herramienta para el tratamiento del cáncer de mama" se centra en el diseño de un nanodispositivo dirigido a los fibroblastos asociados al cáncer y en la evaluación de su potencial como nueva estrategia terapéutica para el tratamiento del cáncer de mama. Se diseñó y sintetizó una nanopartícula utilizando nanopartículas mesoporosas de sílice como soporte, cargadas con doxorrubicina y funcionalizadas con un péptido ligando de FAP-¿ (NP-FAP-DOX). La caracterización de NP-FAP-DOX mostró una liberación controlada de la carga y un perfil no tóxico in vitro. Los estudios in vitro evaluaron la eficacia de las nanopartículas para dirigirse a FAP-¿, la citotoxicidad celular y la penetrabilidad tumoral en las líneas celulares de cáncer de mama, en los fibroblastos asociados al cáncer derivados de biopsias de pacientes con cáncer de mama triple negativo y en los organoides derivados de pacientes con cáncer de mama. Estos estudios demostraron que NP-FAP-DOX se dirigió eficazmente y produjo un efecto citotóxico en células de cáncer de mama con expresión positiva de FAP-¿, así como en fibroblastos asociados al cáncer. Además, la NP-FAP-DOX presentó una buena eficiencia de penetración en los organoides derivados de paciente, manteniendo así la acción dirigida y el efecto citotóxico en este modelo tridimensional. Finalmente, se evaluó la eficacia de NP-FAP-DOX in vivo en un modelo murino de cáncer de mama triple negativo. La NP-FAP-DOX mostró una buena capacidad para atacar tumores y una administración eficaz de fármacos, lo que dio como resultado un efecto antitumoral in vivo. Además, el tratamiento in vivo con NP-FAP-DOX se dirigió eficazmente a los fibroblastos asociados al cáncer y los eliminó, lo que llevó a la remodulación del microambiente tumoral y a la activación de la respuesta inmunitaria del tumor. Específicamente, este tratamiento promovió la infiltración de linfocitos, aumentó el porcentaje de células asesinas naturales y disminuyó los macrófagos M2, lo que llevó a un aumento de la proporción M1/M2 en los tumores. Además, las nanopartículas mejoraron el perfil terapéutico y de seguridad del fármaco libre, previniendo la toxicidad cardíaca y sistémica inducida por doxorrubicina. Con todo, estos resultados demostraron el potencial de los nanodispositivos diseñados como un nuevo sistema de administración de fármacos dirigido para el tratamiento del cáncer de mama. Estas nanopartículas pueden mejorar la eficacia de la administración de fármacos, superar los efectos secundarios adversos y mejorar la eficacia de la terapia mediante la modulación del microambiente tumoral. / [CA] La majoria de les teràpies contra el càncer de mama que s'utilitzen actualment en la pràctica clínica, es centren en atacar les cèl·lules tumorals. Tanmateix, els nous avanços en el camp de la immunologia han ressaltat el paper principal del microambient tumoral en la modulació tumoral. Específicament, els fibroblasts associats al càncer tenen un paper important en la progressió tumoral, la modulació de la immunitat tumoral i la resistència a teràpia. Per això, aquesta tesi doctoral titulada "Nanopartícules de sílice mesoporoses dirigides al microambient tumoral com a ferramenta per al tractament del càncer de mama" es centra en el disseny d'un nanodispositiu dirigit als fibroblasts associats al càncer i en l'avaluació del seu potencial com a nova estratègia terapèutica per al tractament del càncer de mama. Es va dissenyar i sintetitzar una nanopartícula utilitzant nanopartícules mesoporoses de sílice com a suport, carregades amb doxorubicina i funcionalitzades amb un pèptid lligand de FAP-¿ (NP-FAP-DOX). La caracterització de NP-FAP-DOX va mostrar un alliberament controlat de la càrrega i un perfil no tòxic in vitro. Els estudis in vitro van avaluar la eficàcia de les nanopartícules en l'acció dirigida a FAP-¿, la citotoxicitat cel·lular i la penetrabilitat tumoral en les línies cel·lulars de càncer de mama, en els fibroblasts associats al càncer derivats de biòpsies de pacients amb càncer de mama triple negatiu i en els organoides derivats de pacients amb càncer de mama. Aquests estudis van demostrar que NP-FAP-DOX es dirigia eficaçment i produïa un efecte citotòxic en les cèl·lules de càncer de mama amb expressió positiva de FAP-¿, així com en fibroblasts associats al càncer. A més, la NP-FAP-DOX va presentar una bona eficiència de penetració en els organoides derivats de pacient, mantenint així l'acció dirigida i l'efecte citotòxic en aquest model tridimensional. Finalment, es va avaluar la eficàcia de NP-FAP-DOX in vivo en un model murí de càncer de mama triple negatiu. La NP-FAP-DOX va mostrar una bona capacitat per a atacar tumors i una administració eficaç de fàrmacs, el que va donar com a resultat un efecte antitumoral in vivo. Addicionalment, el tractament in vivo amb NP-FAP-DOX es va dirigir eficaçment als fibroblasts associats al càncer generant la seua depleció i així, la remodelació del microambient tumoral i l'activació de la resposta immunitària del tumor. Específicament, aquest tractament va promoure la infiltració de limfòcits, va augmentar el percentatge de cèl·lules citocides naturals i va disminuir els macròfags M2, el que va conduir a un augment en la proporció M1/M2 en els tumors. A més, les nanopartícules van millorar el perfil terapèutic i de seguretat del fàrmac lliure, prevenint la toxicitat cardíaca i sistèmica induïda per la doxorubicina. Amb tot, aquests resultats demostraren el potencial dels nanodispositius dissenyats com un nou sistema d'administració de fàrmacs dirigits per al tractament del càncer de mama. Aquestes nanopartícules poden millorar l'eficàcia de l'administració de fàrmacs, reduir els efectes secundaris adversos i millorar l'eficàcia de la teràpia mitjançant la modulació del microambient tumoral. / [EN] Most of the breast cancer therapies currently used in the clinical practice are focused on targeting tumor cells. Nevertheless, new advances in the immunology field uncovered the main role of the tumor microenvironment in tumor modulation. Specifically, cancer-associated fibroblasts play an important role in tumor progression, tumor immunity modulation, and therapy resistance. Hence, this Ph.D. thesis entitled "Mesoporous silica nanoparticles targeting tumor microenvironment as a tool for breast cancer treatment" is focused on the design of a nanodevice targeting cancer-associated fibroblasts and on the evaluation of its potential as a new therapeutic strategy for breast cancer treatment. A nanoparticle was designed and synthesized using mesoporous silica nanoparticles as support, loaded with doxorubicin, and functionalized with a FAP-¿ ligand peptide (NP-FAP-DOX). NP-FAP-DOX's characterization showed controlled cargo release and an in vitro nontoxic profile. The in vitro studies evaluated the nanoparticle efficacy to target FAP-¿, cellular cytotoxicity, and tumor penetration in breast cancer cell lines, cancer-associated fibroblasts derived from triple-negative breast cancer patient biopsies, and breast cancer patient-derived organoids. These studies probed that the NP-FAP-DOX efficiently targeted and produced a cytotoxic effect in breast cancer cells with FAP-¿ positive expression as well as in cancer-associated fibroblasts. Moreover, the NP-FAP-DOX presented good penetration efficiency in patient-derived organoids, while maintaining the targeting and cytotoxic effect in this 3D model. Finally, the NP-FAP-DOX's in vivo efficacy was evaluated in a murine triple-negative breast cancer model. The NP-FAP-DOX showed a tumor-targeting ability and effective drug delivery, resulting in an in vivo antitumoral effect. Moreover, the NP-FAP-DOX in vivo treatment efficiently targeted and depleted cancer-associated fibroblasts, leading to tumor microenvironment re-modulation and activation of tumor immune response. Specifically, this treatment promoted lymphocyte infiltration, increased the percentage of natural killer cells, and decreased the M2-like macrophages leading to an increased M1/M2 ratio in tumors. Besides, the nanoparticles improved the therapeutic and safety profile of the free drug, preventing doxorubicin-induced cardio and systemic toxicity. Overall, these results demonstrated the potential of the designed nanodevices as a new targeted drug delivery system for breast cancer treatment. These nanoparticles can improve drug delivery efficacy, overcome adverse side effects, and enhance therapy efficacy through the modulation of the tumor microenvironment. / Trigo Lameirinhas, AC. (2024). Mesoporous Silica Nanoparticles Targeting Tumor Microenvironment as a Tool for Breast Cancer Treatment [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/210630

Page generated in 0.0803 seconds