• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 17
  • 17
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Physical controls on hydrate saturation distribution in the subsurface

Behseresht, Javad 22 February 2013 (has links)
Many Arctic gas hydrate reservoirs such as those of the Prudhoe Bay and Kuparuk River area on the Alaska North Slope (ANS) are believed originally to be natural gas accumulations converted to hydrate after being placed in the gas hydrate stability zone (GHSZ) in response to ancient climate cooling. A mechanistic model is proposed to predict/explain hydrate saturation distribution in “converted free gas” hydrate reservoirs in sub-permafrost formations in the Arctic. This 1-D model assumes that a gas column accumulates and subsequently is converted to hydrate. The processes considered are the volume change during hydrate formation and consequent fluid phase transport within the column, the descent of the base of gas hydrate stability zone through the column, and sedimentological variations with depth. Crucially, the latter enable disconnection of the gas column during hydrate formation, which leads to substantial variation in hydrate saturation distribution. One form of variation observed in Arctic hydrate reservoirs is that zones of very low hydrate saturations are interspersed abruptly between zones of large hydrate saturations. The model was applied on data from Mount Elbert well, a gas hydrate stratigraphic test well drilled in the Milne Point area of the ANS. The model is consistent with observations from the well log and interpretations of seismic anomalies in the area. The model also predicts that a considerable amount of fluid (of order one pore volume of gaseous and/or aqueous phases) must migrate within or into the gas column during hydrate formation. This work offers the first explanatory model of its kind that addresses "converted free gas reservoirs" from a new angle: the effect of volume change during hydrate formation combined with capillary entry pressure variation versus depth. Mechanisms by which the fluid movement, associated with the hydrate formation, could have occurred are also analyzed. As the base of the GHSZ descends through the sediment, hydrate forms within the GHSZ. The net volume reduction associated with hydrate formation creates a “sink” which drives flow of gaseous and aqueous phases to the hydrate formation zone. Flow driven by saturation gradients plays a key role in creating reservoirs of large hydrate saturations, as observed in Mount Elbert. Viscous-dominated pressure-driven flow of gaseous and aqueous phases cannot explain large hydrate saturations originated from large-saturation gas accumulations. The mode of hydrate formation for a wide range of rate of hydrate formation, rate of descent of the BGHSZ and host sediments characteristics are analyzed and characterized based on dimensionless groups. The proposed transport model is also consistent with field data from hydrate-bearing sand units in Mount Elbert well. Results show that not only the petrophysical properties of the host sediment but also the rate of hydrate formation and the rate of temperature cooling at the surface contribute greatly to the final hydrate saturation profiles. / text
12

Πρότυπες μέθοδοι προσδιορισμού της πορομετρικής καμπύλης μη υφασμένων Γεωυφασμάτων / Standard methods for determing the pore size distribution curve of nonwoven Geotextiles

Παναγιωτίδη, Ελένη 14 May 2007 (has links)
Για τον προσδιορισμό της πορομετρικής καμπύλης των γεωυφασμάτων διατίθενται σήμερα τρία πρότυπα (ASTM D6767, EN ISO 12956 και ASTM D4751) που θεωρούνται “διεθνούς” αποδοχής. Το πιο πρόσφατο από αυτά (ASTM D6767) εγκρίθηκε το 2002, ορίζει μέθοδο με βάση τη ροή σε τριχοειδή και αποτελεί το κύριο αντικείμενο της παρούσας διατριβής. Ελέγχθηκαν 52 μη υφασμένα γεωυφάσματα κατασκευασμένα από ίνες πολυπροπυλενίου τόσο κατά ASTM D6767 όσο και κατά EN ISO 12956 (υγρό κοσκίνισμα) και ASTM D4751 (ξηρό κοσκίνισμα). Τα αποτελέσματα που προέκυψαν συγκρίθηκαν τόσο μεταξύ τους όσο και με φυσικές ιδιότητες των γεωυφασμάτων, με τιμές μεγεθών που παρέχουν οι κατασκευαστές αυτών των προϊόντων και με τιμές μεγεθών που υπολογίζονται θεωρητικά. Τα μεγέθη πόρων και οι πορομετρικές καμπύλες που προκύπτουν εργαστηριακά με εφαρμογή κάθε μίας από τις τρεις μεθόδους είναι διαφορετικά. Αυτό οφείλεται στις διαφορετικές παραδοχές ή υποθέσεις κάθε μεθόδου αλλά και στις διαδικασίες που προβλέπει η κάθε μέθοδος. Ειδικότερα, οι δύο βασικές υποθέσεις του προτύπου ASTM D6767 αφορούν τη γωνία επαφής, θ, μεταξύ ρευστού και στερεού (τίθεται ίση με μηδέν) και τη μορφή της διατομής των πόρων των γεωυφασμάτων (κυλινδρική). Λόγω της δομής των μη υφασμένων γεωυφασμάτων οι δύο παραπάνω υποθέσεις δεν είναι δυνατόν να επαληθευθούν. Για τον λόγο αυτό στην εξίσωση προσδιορισμού των μεγεθών πόρων του προτύπου ASTM D6767 εισάγεται διορθωτικός συντελεστής. Από την επεξεργασία των αποτελεσμάτων της παρούσας διατριβής προέκυψε ότι ο συντελεστής αυτός πρέπει να έχει τιμή ίση με 1/3 (για τη συγκεκριμένη συσκευή που χρησιμοποιήθηκε και τις διαδικασίες που εφαρμόστηκαν για την εκτέλεση των δοκιμών) ώστε τα αποτελέσματα να προσεγγίζουν ικανοποιητικά αυτά της δοκιμής κατά EN ISO 12956. / Three internationally accepted standards (ASTM D6767, EN ISO 12956 and ASTM D4751) are available today for determing the pore size distribution of geotextiles. The most recently approved standard (2002) is ASTM D6767 which defines a method based on capillary flow. Laboratory testing according to this standard is the main subject of this thesis. Fifty two nonwoven geotextiles, made of polypropylene fibers, were tested according to the three standardized methods (ASTM D6767, EN ISO 12956 – wet sieving and ASTM D4751 – dry sieving). Comparisons were made between the results obtained from each standardized method as well as between measured pore sizes and geotextile physical properties, manufacturer provided pore sizes and values obtained theoretically. Different pore sizes and pore size distribution curves are obtained when different laboratory standard methods are applied. This is due to the different assumptions on which each method is based and also due to the procedures that each method specifies. The two main assumptions of the Standard ASTM D6767 concern the contact angle, θ, between liquid and solid (equal to zero) and the pore shapes of the geotextiles (cylindrical). Due to the structure of the nonwoven geotextiles the effect of these assumptions is different to quantify. Accordingly, the computation of pore sizes according standard ASTM D6767 is based on the introduction of a correction coefficient in the pertinent equation. The results obtained during this correction coefficient should have a value equal to 1/3 for the particular device used and the procedures applied. Use of this correction coefficient fields results that approximate very well the results obtained from wet sieving tests according to Standard EN ISO 12956.
13

Pore Size Characterization of Monolithic Capillary Columns Using Capillary Flow Porometry

Fang, Yan 25 September 2009 (has links) (PDF)
A simple capillary flow porometer (CFP) was assembled for pore structure characterization of monolithic capillary liquid chromatography columns based on ASTM standard F316-86. Determination of differential pressures and flow rates through dry and wet samples provided the necessary information to determine the through-pore throat diameter, bubble point pore diameter, mean flow pore diameter, and pore distribution. Unlike measurements in bulk using traditional techniques to provide indirect information about the pore properties of monolithic columns, monoliths can be characterized in their original chromatographic forms with this system. The performance of the new CFP was first evaluated by characterizing the pore size distributions of capillary columns packed with 3, 5, and 7 µm spherical silica particles. The mean through-pore diameters of the three packed columns were measured to be 0.5, 1.0 and 1.4 µm, which are all smaller than the pore diameters calculated from a close-packed arrangement (i.e., 0.7, 1.1 and 1.6 µm), with distributions ranging from 0.1 - 0.7, 0.3 - 1.1 and 0.4 - 2.6 µm, respectively. This is reasonable, since visual inspection of SEM images of the particles showed relatively large fractions of smaller than specified particles in the samples. Typical silica monoliths were fabricated via phase separation by polymerization of tetramethoxysilane (TMOS) in the presence of poly(ethylene glycol) (PEG). The mean pore diameter and pore size distribution measured using the CFP system verified that a greater number of pores with small throat diameters were prepared in columns with higher PEG content in the prepolymer mixture. SEM images also showed that the pore diameters of monoliths fabricated in bulk were found to be smaller than those in monoliths synthesized by the same procedure, but confined in capillary tubes. The CFP system was also used to study the effects of column inner diameter and length on pore properties of polymeric monoliths. Typical monoliths based on butyl methacrylate (BMA) and poly(ethylene glycol) diacrylate (PEGDA) in capillary columns with different inner diameters (i.e., 50 to 250 µm) and lengths (i.e., 1.5 to 3.0 cm) were characterized. The mean pore diameters and the pore size distributions indicated that varying the inner diameter and/or the length of the column affected little the pore properties. The latter finding is especially important to substantiate the use of CFP for determination of monolithic pore structures in capillaries. The results indicate that the through-pores are highly interconnected and, therefore, pore structure determinations by CFP are independent of capillary length. A negatively charged polymer monolith based on BMA, ethylene glycol dimethacrylate (EDMA) and 2-acryloylamido-2-methylpropanesulfonic acid monomer (AMPS), was successfully prepared in silica sacrificial layer, planar (SLP) microchannels. Extraction of FITC (fluorescein 5-isothiocyanate) labeled phenylalanine and capillary electrochromatography (CEC) of FITC labeled glycine using this monolithic stationary phase were demonstrated.
14

Microfluidics in Surface Modified PDMS : Towards Miniaturized Diagnostic Tools

Thorslund, Sara January 2006 (has links)
<p>There is a strong trend in fabricating <i>miniaturized total analytical systems</i>, µTAS, for various biochemical and cell biology applications. These miniaturized systems could e.g. gain better separation performances, be faster, consume less expensive reagents and be used for studies that are difficult to access in the macro world. Disposable µTAS eliminate the risk of carry-over and can be fabricated to a low cost.</p><p>This work focused on the development of µTAS modules with the intentional use for miniaturized diagnostics. Modules for blood separation, desalting, enrichment, separation and ESI-MS detection were successfully fabricated. Surface coatings were additionally developed and evaluated for applications in µTAS with complex biological samples. The first heparin coating could be easily immobilized in a one-step-process, whereas the second heparin coating was aimed to form a hydrophilic surface that was able to draw blood or plasma samples into a microfluidic system by capillary forces. </p><p>The last mentioned heparin surface was further utilized when developing a chip-based sensor for performing CD4-count in human blood, an important marker to determine the stage of an HIV-infection.</p><p>All devices in this work were fabricated in PDMS, an elastomeric polymer with the advantage of rapid and less expensive prototyping of the microfabricated master. It was shown that PDMS could be considered as the material of choice for future commercial µTAS. The devices were intentionally produced using a low grade of fabrication complexity. It was however demonstrated that even with low complexity, it is possible to integrate several functional chip modules into a single microfluidic device.</p>
15

Microfluidics in Surface Modified PDMS : Towards Miniaturized Diagnostic Tools

Thorslund, Sara January 2006 (has links)
There is a strong trend in fabricating miniaturized total analytical systems, µTAS, for various biochemical and cell biology applications. These miniaturized systems could e.g. gain better separation performances, be faster, consume less expensive reagents and be used for studies that are difficult to access in the macro world. Disposable µTAS eliminate the risk of carry-over and can be fabricated to a low cost. This work focused on the development of µTAS modules with the intentional use for miniaturized diagnostics. Modules for blood separation, desalting, enrichment, separation and ESI-MS detection were successfully fabricated. Surface coatings were additionally developed and evaluated for applications in µTAS with complex biological samples. The first heparin coating could be easily immobilized in a one-step-process, whereas the second heparin coating was aimed to form a hydrophilic surface that was able to draw blood or plasma samples into a microfluidic system by capillary forces. The last mentioned heparin surface was further utilized when developing a chip-based sensor for performing CD4-count in human blood, an important marker to determine the stage of an HIV-infection. All devices in this work were fabricated in PDMS, an elastomeric polymer with the advantage of rapid and less expensive prototyping of the microfabricated master. It was shown that PDMS could be considered as the material of choice for future commercial µTAS. The devices were intentionally produced using a low grade of fabrication complexity. It was however demonstrated that even with low complexity, it is possible to integrate several functional chip modules into a single microfluidic device.
16

Thermomechanical Manufacturing of Polymer Microstructures and Nanostructures

Rowland, Harry Dwight 04 April 2007 (has links)
Molding is a simple manufacturing process whereby fluid fills a master tool and then solidifies in the shape of the tool cavity. The precise nature of material flow during molding has long allowed fabrication of plastic components with sizes 1 mm 1 m. Polymer molding with precise critical dimension control could enable scalable, inexpensive production of micro- and nanostructures for functional or lithographic use. This dissertation reports experiments and simulations on molding of polymer micro- and nanostructures at length scales 1 nm 1 mm. The research investigates two main areas: 1) mass transport during micromolding and 2) polymer mechanical properties during nanomolding at length scales 100 nm. Measurements and simulations of molding features of size 100 nm 1 mm show local mold geometry modulates location and rate of polymer shear and determines fill time. Dimensionless ratios of mold geometry, polymer thickness, and bulk material and process properties can predict flow by viscous or capillary forces, shape of polymer deformation, and mold fill time. Measurements and simulations of molding at length scales 100 nm show the importance of nanoscale physical processes distinct from bulk during mechanical processing. Continuum simulations of atomic force microscope nanoindentation accurately model sub-continuum polymer mechanical response but highlight the need for nanoscale material property measurements to accurately model deformation shape. The development of temperature-controlled nanoindentation enables characterization of nanoscale material properties. Nanoscale uniaxial compression and squeeze flow measurements of glassy and viscoelastic polymer show film thickness determines polymer entanglement with cooperative polymer motions distinct from those observed in bulk. This research allows predictive design of molding processes and highlights the importance of nanoscale mechanical properties that could aid understanding of polymer physics.
17

Water Transfers in Sub-Micron Porous Media during Drying and Imbibition Transferts d'eau en milieux nano-poreux durant le séchage et l'imbibition / Transferts d'eau en milieux nano-poreux durant le séchage et l'imbibition

Thiery, Jules 25 November 2016 (has links)
Le séchage et l’imbibition sont des phénomènes physiques indispensables, de nos jours, à la formulation de nombreux matériaux en milieu industriel. Ces phénomènes, comme on peut l’observer avec l’apparition de fissures lors du séchage d’une peinture fraichement appliquée, peuvent affecter de manière irréversible l’aspect, l’intégrité ou la durabilité du matériau concerné. De plus, dans l’industrie, la connaissance des mécanismes physiques mis en jeu lors de ces étapes de séchage ou d’imbibition reste fréquemment empirique, conduisant à de fortes consommations d’énergie. La compréhension fondamentale de ces phénomènes représente donc un enjeu industriel majeur.En utilisant des techniques de mesure telles que l’Imagerie à Résonnance Magnétique (IRM) ou la microscopie électronique, nous nous sommes intéressés à la physique des écoulements fluides dans des milieux poreux modèles, déformables ou non-déformables, dont la taille caractéristique des pores varie de l’échelle du millimètre à celle de quelques nanomètres.Le résultat essentiel de ces travaux de thèse est la démonstration que l’évolution de la distribution de liquide dans ces milieux modèles, lors du séchage, provient de la compétition entre deux phénomènes physiques, quelle que soit la taille des pores, et que le matériau fissure ou subisse du retrait. Ces phénomènes physiques sont : le ré-équilibrage capillaire, ayant lieu lors de la substitution de l’eau par l’air dans le milieu poreux, provoquant un écoulement fluide selon la direction du gradient des pressions de Laplace imposé au liquide par l’évaporation, et le développement d’une région sèche apparente depuis la surface libre de l’échantillon.Plus précisément, nous montrons que le phénomène de ré-équilibrage capillaire est permanent lors du séchage et permet de maintenir une saturation homogène dans les régions humides de l’échantillon quel que soit le régime de séchage rencontré ou la taille des pores de cet échantillon. Pour des pores de dimension supérieure à quelques nanomètres, nous montrons que le séchage s’opère en deux étapes : une première période à fort taux de séchage dont la durée décroit avec la réduction de la taille des pores, cette étape est suivie d’une seconde période présentant le développement d’une région sèche depuis la surface de l’échantillon provoquant une chute du taux de séchage. Nous démontrons aussi que les phénomènes de fracturation et de retrait peuvent influer de façon significative sur la durée de cette première période.Quand la taille des pores devient inferieure à quelques nanomètres, nous montrons que l’infime rayon de courbure de l’interface eau-air développant dans les pores du milieu poreux tend à limiter le taux d’évaporation de l’échantillon et entraine sa décroissance progressive au cours du séchage. De manière surprenante, dans ce cas particulier, la distribution d’eau à travers l’échantillon reste homogène tout au long du séchage. Cette dernière observation nous renseigne sur le fonctionnement du mécanisme de ré-équilibrage capillaire dans les nano-pores et montre que les propriétés d’écoulement liquides en milieux confinés diffèrent grandement de celles rencontrées dans des milieux plus grossiers / Drying and imbibition are widely used in industry to formulate and process materials. Familiar to anyone who ever filled a sponge with water and left it to dry, or spread a coat of paint, fluid to solid transitions may affect the aspect, the integrity and the durability of the material processing. Moreover, in industry this transitional steps frequently relies on empirical techniques for the control of both of these phenomena, resulting in an overconsumption of energy. The understanding of the mechanisms behind drying and imbibition are therefore of crucial industrial stakes.Using measurement techniques such as MRI imaging or electron microscopy, we studied the physics of fluid flow within model deformable and non-deformable porous media with pore sizes ranging from a couple of millimiters to a few nanometers, during imbibition or drying.A fundamental discovery our work features is the demonstration that during convective drying, in any case, namely even down to a nanometric pore size, and even if the material shrinks or fracture during the process, the liquid distribution within a sample evolves from the competition between two phenomena. Particularly, capillary re-equilibration caused by capillary effects inducing liquid flow to equilibrate Laplace pressure throughout the partially saturated regions of the samples, and, the inward development of an apparent dry region from the surface of the sample exposed to the airflow.In details, this manuscript shows that at all time capillary-equilibration enables to maintain a homogeneous saturation within the wet region of the porous sample and two regimes may be distinguished from considerations on the drying rate and the pore size of the material. Namely, for pore sizes superior to a couple of nano meters, a first regime exhibits a high drying rate down to lower saturation with increasing pore size, followed by a second regime where a dry region develops from the sample free surface, resulting in a falling rate period. Note that deformation such as shrinkage and crack may convey the extension of the period of high rate. However, in smaller pores the small curvature of the air-water interface limits the evaporation rate from the very beginning of the process and gives rise to a progressively decreasing drying rate while a homogeneous distribution of water is maintained throughout the sample. This last piece of information emphasizes that in nano-pores capillary equilibration still occurs in a series of instantaneous scattered rearrangements of liquid throughout the sample and finally that the flowing properties of the liquid strongly differ from standard unidirectional liquid flow

Page generated in 0.0736 seconds