• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • Tagged with
  • 17
  • 17
  • 17
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrochemical studies on carbon dioxide corrosion and its inhibition.

Tan, Yong-jun January 1996 (has links)
This thesis mainly concerns the application of electrochemical impedance spectroscopy (EIS) and electrochemical noise analysis (ENA) to the study of CO(subscript)2 corrosion of mild steel and its inhibition. The primary focus is on the use of EIS and ENA to monitor inhibitor film performance and to evaluate inhibitor film persistency.EIS was shown to be a suitable technique to study CO(subscript)2 corrosion product scale, and inhibitor films. The formation and deterioration of protective scales and inhibitor films is found to be accompanied by characteristic spectral changes and a rapid change in electrode impedance. EIS data were used to calculate corrosion related parameters such as the resistances and capacitances of inhibitor layers, and the charge transfer resistance and double layer capacitance. These parameters were used to analyse inhibitor mechanisms, determine corrosion rates and the persistence of inhibitor films.ENA is also a suitable technique to monitor the formation and deterioration of inhibitor films. It has the advantage of being able to monitor rapid processes which occur within one second. Several technical and theoretical developments were made in this thesis including the development of a new method of instantaneous corrosion rate measurement to study fast corrosion processes (the continuous noise resistance calculation method). Experimentally, the noise resistance was confirmed to be similar to linear polarisation resistance in the systems studies. The theoretical background and the advantages and disadvantages of the ENA technique are also discussed.Corrosion product scales formed under different conditions were investigated using EIS and surface analysis techniques. Temperature, pressure and exposure time were confirmed to be the important factors influencing the degree of protection given by the scale. The morphology of corrosion scales ++ / showed an obvious correlation to their protective ability. Electron microscopy revealed two types of crystal structures on corroded steel coupons. The smaller crystals associated with one of these structures was found to contribute most to corrosion protection.Several typical CO(subscript)2 corrosion inhibitors, including an imidazoline and a quaternised amine, were studied by EIS. A multi-layer model was employed to explain the EIS characteristics and self-repairing ability of imidazoline films. A quaternised amine film is most probably a physically or electrostatically adsorbed molecular layer which forms rapidly and desorbs easily.The deterioration of films, formed by commercial batch treatment inhibitors, was found to occur in three stages which were indicated or characterised by Bode phase-angle plots. A method to determine inhibitor film persistency was developed. This method is based on determining the three stages of inhibitor film deterioration, and the continuous measurement of corrosion rate, which is accessible at the second and third stages of film deterioration.
2

Mechanisms of protective FeCO₃ film removal in single-phase flow-accelerated CO₂ corrosion of mild steel.

Ruzic, Vukan Unknown Date (has links)
Carbon dioxide (CO2) corrosion is a major problem in the oil and gas production industry. The survival of mild steel equipment is to a large extent conditional on the formation and stamina of protective iron carbonate (FeCO3) films. Damage to protective films allegedly leads to accelerated corrosion attacks and increases the risk of failures. In single-phase flows, film removal phenomena are broadly ascribed to two intrinsic mechanisms: mechanical removal by hydrodynamic forces and/or chemical removal by dissolution. The fact that both mechanisms usually act simultaneously in practice puts their combined action in the forefront regarding its significance and relevance for the industry. Yet, virtually no information is available on the exact conjoint mechanism of protective FeCO3 film removal in single-phase environments. The obscurity is largely due to the uncertainty regarding the roles of hydrodynamic forces and mass transfer, where both are closely related to turbulence intensity levels. The aim of this dissertation was to clarify the roles of the two basic FeCO3 film removal mechanisms during the conjoint removal in undisturbed, single-phase flow in terms of their relative contribution and possible synergistic interaction. The proposed aim was accomplished by applying an innovative analytical approach, in which inherently coupled processes of film formation and removal were decoupled. Also, the two intrinsic removal mechanisms were studied separately in the initial stages, before they were combined to provide a complete picture of the conjoint mechanism. An integrated approach to studying film formation/removal mechanisms involved advanced electrochemical techniques for following film growth/removal, complemented by detailedScanning Electron Microscopy/Energy Dispersive Spectroscopy/X-Ray Mapping characterisations of protective/residual films. A single-phase, highly turbulent flow field was attained by employing a rotating cylinder configuration. A standard corrosion experimental setup was extended to accommodate more complex film studies. A comprehensive flow characterisation around the rotating cylinder was carried out by means of flow visualisation and mass transfer measurements under turbulent flow conditions. While the former facilitated proper design of film formation experiments, the latter led to an empirical mass transfer correlation that enabled quantification of film dissolution rates. Furthermore, although some information on film growth kinetics is available, customised experimentation was necessary to identify the key parameters needed to obtain films with desired characteristics. Sound procedures for FeCO3 film growth were established, which led to the reproducible formation of realistic, protective films after a few days. The results of the pure mechanical removal of protective FeCO3 films have shown that its kinetics are rather slow even at high velocities and have caused a delayed, partial macroscopic type of damage. Yet, the findings demonstrate that the currently widely accepted view, that film removal by hydrodynamic forces in the absence of film dissolution in undisturbed, single-phase flows does not occur, is wrong. The strong correlation found between velocity and pure chemical film removal kinetics implicitly followed via corrosion rates suggests that the dissolution of protective FeCO3 films is under mass transfer control. Pure dissolution has faster removal kinetics and is far more detrimental to film integrity even at relatively high pH (just below saturation) than pure mechanical removal at the same Reynolds number. It has been found that the controlled pure dissolution mechanism led to only partial and selective film removal, where the more dissolution-resistant crystalline top film layer and the dissolution-prone inner layer were differently affected both in terms of the type of damage and its severity. A strong synergistic effect between mechanical and chemical film removal mechanisms has been identified during their simultaneous action. The quantified synergistic share in fully established conjoint film removal (during the steady, linear corrosion rate increase) expressed via corrosion rate gradients increased from 19.4% to 29.7% for the corresponding increase in the rotational speed from 7,000 rpm to 10,000 rpm. The synergism comprised two modes of mutual interactions: enhanced mechanical removal due to dissolution (M/D) and enhanced dissolution due to mechanical removal (D/M). In contrast to the independent action of integral removal mechanisms, where dissolution appears to be more destructive, the interaction between the two was primarily dominated by drastically accelerated mechanical film removal kinetics, that is, M/D rather than D/M mode, the latter of which was inferior. A fundamentally improved understanding of film removal mechanisms in single-phase flows has been reached as a result of the present project, thereby creating a solid foundation for future modelling and a more effective prevention and control of flow accelerated corrosion, not only in CO2 corrosive environments, but also in a wide range of industrial settings.
3

CO₂ top of the line corrosion in the presence of H₂S

Manuitt, Alvaro Camacho January 2006 (has links)
Thesis (M.S.)--Ohio University, August, 2006. / Title from PDF t.p. Includes bibliographical references.
4

Film formation and CO₂ corrosion in the presence of acetic acid /

Nafday, Omkar A. January 2004 (has links)
Thesis (M.S.)--Ohio University, August, 2004. / Includes bibliographical references (p. 78-80).
5

H₂S multiphase flow loop : CO₂ corrosion in the presence of trace amounts of hydrogen sulfide /

Brown, Bruce N. January 2004 (has links)
Thesis (M.S.)--Ohio University, November, 2004. / Includes bibliographical references (p. 11-113)
6

Film formation and CO₂ corrosion in the presence of acetic acid

Nafday, Omkar A. January 2004 (has links)
Thesis (M.S.)--Ohio University, August, 2004. / Title from PDF t.p. Includes bibliographical references (p. 78-80)
7

H₂S multiphase flow loop CO₂ corrosion in the presence of trace amounts of hydrogen sulfide /

Brown, Bruce N. January 2004 (has links)
Thesis (M.S.)--Ohio University, November, 2004. / Title from PDF t.p. Includes bibliographical references (p. 11-113)
8

Measurement of carbon dioxide corrosion on carbon steel using electrochemical frequency modulation

Sridharan, Venkatasubramaniyan 15 July 2009
Electrochemical frequency modulation (EFM), which has been widely used in the research field of semiconductors, was used to study CO2 corrosion on carbon steel under film forming and non-film forming conditions. In the EFM technique two sinusoidal voltage signals of different frequencies are applied to the system and the response current is measured at zero, harmonic and intermodulation frequencies from which the corrosion rate is calculated. The corrosion rate calculation depends upon whether the system is under activation, diffusion or passivation control. In this research rotating cylindrical electrodes made of AISI carbon steel 1018 were immersed in 3% (w/w) NaCl solution saturated with carbon dioxide. The experiment was done at 5 rpm, 24 rpm and 100 rpm simulating laminar, transient and turbulent flow regions respectively. The exposure time was varied from 1 hour to 24 hours and the results were compared with other electrochemical methods such as linear polarization (LP) and electrochemical impedance spectroscopy (EIS). It was found that it was crucial to select the correct EFM model to ensure accurate corrosion rate measurement. A very good agreement in the polarization resistance was obtained between EIS and EFM indicating that EFM can be used as an effective tool in corrosion studies providing that the corrosion mechanism is known.
9

Measurement of carbon dioxide corrosion on carbon steel using electrochemical frequency modulation

Sridharan, Venkatasubramaniyan 15 July 2009 (has links)
Electrochemical frequency modulation (EFM), which has been widely used in the research field of semiconductors, was used to study CO2 corrosion on carbon steel under film forming and non-film forming conditions. In the EFM technique two sinusoidal voltage signals of different frequencies are applied to the system and the response current is measured at zero, harmonic and intermodulation frequencies from which the corrosion rate is calculated. The corrosion rate calculation depends upon whether the system is under activation, diffusion or passivation control. In this research rotating cylindrical electrodes made of AISI carbon steel 1018 were immersed in 3% (w/w) NaCl solution saturated with carbon dioxide. The experiment was done at 5 rpm, 24 rpm and 100 rpm simulating laminar, transient and turbulent flow regions respectively. The exposure time was varied from 1 hour to 24 hours and the results were compared with other electrochemical methods such as linear polarization (LP) and electrochemical impedance spectroscopy (EIS). It was found that it was crucial to select the correct EFM model to ensure accurate corrosion rate measurement. A very good agreement in the polarization resistance was obtained between EIS and EFM indicating that EFM can be used as an effective tool in corrosion studies providing that the corrosion mechanism is known.
10

Electrochemical Model of Carbon Dioxide Corrosion in the Presence of Organic Corrosion Inhibitors

Dominguez Olivo, Juan M. 01 June 2020 (has links)
No description available.

Page generated in 0.0791 seconds