• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 213
  • 53
  • 30
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 422
  • 422
  • 83
  • 66
  • 55
  • 54
  • 50
  • 43
  • 40
  • 40
  • 39
  • 38
  • 35
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Do Forest Commons Contribute to International Environmental Initiatives? A Socio-Ecological Analysis of Nepalese Forest Commons in view of REDD+

Luintel, Harisharan 26 July 2016 (has links)
Forests in developing countries have the potential to contribute to global efforts to mitigate climate change, promote biodiversity and support the livelihoods of rural, local people. Approximately one-fourth of such forests are under the control of local communities, which primarily manage forests for subsistence and to meet their livelihood needs. The trend of bottom-up community control is increasing through the adoption of decentralization reforms over the last 40 years. In contrast, the United Nations has introduced the top-down program, Reducing Emissions from Deforestation and Forest Degradation (REDD+) for the conservation and enhancement of forest carbon and the sustainable management of forest in developing countries. REDD+ incentivizes forest-managing communities to sequester carbon and reduce emissions. REDD+ has created hope for managing forests to mitigate climate change and has created fear that the new initiative may not be effective and may not ensure continuing forest-managing community benefits. However, little research has been conducted to answer these concerns. By taking nationally representative data from Nepalese community-managed forests (“forest commons"), I bring insights into whether and how these forests can contribute to REDD+ initiatives, particularly as they relate to carbon sequestration, biodiversity, equity in benefit sharing and collective action. My results indicated the highly variable carbon and biodiversity in the forest plots across the country, depicting the availability of space for additional growth in carbon storage and biodiversity conservation. My results also reflect the complex and varied relationships of carbon with different indices of biodiversity at the national level, across geographic and topographic regions, and in forests with varying canopy covers. Weak positive relationships between carbon sequestration and biodiversity conservation indicate the possibility of synergies between carbon-forestry and biodiversity conservation. I also found that the formal community forestry program (CFP) has clearly positive impacts on biodiversity conservation and household-level equity in benefit sharing and a negative impact on carbon sequestration at the national level. However, disaggregated results of impacts of CFP on biodiversity, carbon and equity across geography, topography, forest quality and social groups display mixed results i.e., either positive or negative or neutral. I also identified that different drivers of collective action have different (i.e., positive, neutral, and negative) associations with carbon sequestration, which either supports or challenges established knowledge. In aggregate, my research indicates the potential of contribution by forest commons, and specially the CFP, to global environmental initiatives such as REDD+. It suggests that targeted, dedicated policies and programs to increase carbon sequestration, biodiversity conservation and foster equity and collective actions are critical. In addition, my results also contribute to the growing literature on socio-ecological implications of forest commons that demonstrated the need of interdisciplinary research to understand human-nature relationships in the changing context.
362

Paleoenvironments and Geochemical Signals from the Late Barremian to the Middle Aptian in a Tethyan Marginal Basin, Northeast Spain: Implications for Carbon Sequestration in Restricted Basins

Sanchez Hernandez, Yosmel, Mr. 23 June 2014 (has links)
The hallmark of oceanic anoxic event 1a (OAE1a) (early Aptian ~125 Ma) corresponds to worldwide deposition of black shales with total organic carbon (TOC) content > 2% and a d13C positive excursion up to ~5‰. OAE1a has been related to large igneous province volcanism and dissociation of methane hydrates during the Lower Cretaceous. However, the occurrence of atypical, coeval and diachronous organic-rich deposits associated with OAE1a, which are also characterized by positive spikes of the d13C in epicontinental to restricted marine environments of the Tethys Ocean, indicates localized responses decoupled from complex global forcing factors. The present research is a high-resolution, multiproxy approach to assess the paleoenvironmental conditions that led to enhanced carbon sequestration from the late Barremian to the middle Aptian in a restricted, Tethyan marginal basin prior to and during OAE1a. I studied the lower 240 m of the El Pui section, Organyà Basin, Spanish Pyrenees. The basin developed as the result of extensional tectonism linked to the opening of the Atlantic Ocean. At the field scale the section consists of a sequence of alternating beds of cm – m-scale, medium-gray to grayish-black limestones and marlstones with TOC up to ~4%. The results indicate that the lowest 85 m of the section, from latest Barremian –earliest Aptian, characterize a deepening phase of the basin concomitant with sustained riverine flux and intensified primary productivity. These changes induced a shift in the sedimentation pattern and decreased the oxygen levels in the water column through organic matter respiration and limited ventilation of the basin. The upper 155 m comprising the earliest – late-early Aptian document the occurrence of OAE1a and its associated geochemical signatures (TOC up to 3% and a positive shift in d13C of ~5‰). However, a low enrichment of redox-sensitive trace elements indicates that the basin did not achieve anoxic conditions. The results also suggest that a shallower-phase of the basin, coeval with platform progradation, may have increased ventilation of the basin at the same time that heightened sedimentation rates and additional input of organic matter from terrestrial sources increased the burial and preservation rate of TOC in the sediment.
363

Geochemical analysis of four late middle Pennsylvanian cores from Southern Indiana

Broach, Clinton M. 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The shale and mudstone directly superjacent to Desmoinesian coal seams of southern Indiana (Springfield, Houchin Creek, Survant, and Seelyville coals) were initially deposited under marine waters and are shown to exhibit high concentrations of organic carbon, sulfur and redox-sensitive metals (Mo, V, Ni, Fe, and U) that were sequestered during times of benthic anoxia and intermittent to sustained euxinia (anoxic and sulfidic). Strata upsection display geochemical signatures that indicate increasingly oxic and nearshore sedimentation that mirrors cyclothemic sequence stratigraphic trends Carbon source, nearshore and offshore proximity, freshwater and marine influence, and redox conditions of the epeiric sea overlying southern Indiana during the Late Middle Pennsylvanian were identified and tracked throughout the deposition of four drill cores of the Petersburg, Linton and Staunton Formations. Carbon, nitrogen, and sulfur data (total organic carbon [TOC], total nitrogen [TN], and total sulfur [TS]); paleoredox proxies ([Mo/Al], [V/Al], [Th/U], [Fetot/Al]); organic carbon isotopes (δ13Corg); and detrital influx concentrations (Zr) were all used in conjunction with lithological and paleontological interpretations to better understand the mode of deposition in this unique midcontinent ancient epeiric sea. Geochemical results when combined with lithologic and paleontologic interpretations reveal a dynamic environmental system where water column geochemistry varies with the influence of variable magnitudes of epeiric seawater flooding on the extensive peatlands of equatorial Late Middle Pennsylvanian southern Indiana.
364

The Economic Effects of Community Forest Management in the Maya Biosphere Reserve

Bocci, Corinne Frances 09 October 2019 (has links)
No description available.
365

Functional Ecology and Ecosystem Services of Urban Trees

Simovic, Milos 14 September 2020 (has links)
No description available.
366

Historical inventory of sedimentary carbon and metals in a Bay of Fundy salt marsh

Clegg, Yolanda. January 1999 (has links)
No description available.
367

Impact of a carbon market on afforestation incentives : a real option approach

Jetté-Nantel, Simon. January 2006 (has links)
No description available.
368

Soil carbon relations in Swedish agriculture : A GIS analysis and literature review of soil characteristics at farm level

Schulze, Christiane January 2022 (has links)
Carbon storage in agricultural soils is an important measure to mitigate climate change. As the soil management techniques can greatly influence the amount of carbon stored in agricultural soils, the influence of different managements was analyzed in a literature review for northern Europe and Sweden. With a unique dataset, the temporal development of soil organic matter, and in a case study the influence of SOM on crop yield in Sweden was examined, as well as the relationship of SOM towards clay content and pH level. For northern Europe, organic amendments in form of manure and sewage sludge application and crop residue incorporation as well as nitrogen fertilization and diverse crop rotations indicate a positive impact on soil organic carbon. The influence of reduced tillage was found to be less impactful. Detailed development of SOM in Swedish agricultural fields remains unclear due to data restraints and scarcity, but for the Skåne region the data analysis suggests a stable SOM content for the time period analyzed. The relationship of SOM to crop yield remains unclear but indicates that SOM can have a positive effect on crop yield. More research is needed to understand underlying mechanisms of development, management influence and yield response on soil organic carbon for northern Europe.
369

TREE HEALTH, CARBON SEQUESTRATION, AND SUSTAINABILITY OF URBAN FORESTS

Chiriboga, Christian Alejandro 06 August 2013 (has links)
No description available.
370

Kolinlagringar i Sveriges skogar : En jämförelse mellan produktionsskog och urskog / Carbon storage in Swedish forests : A comparison between production forest and old-growth forest

Brunzell, Alexandra January 2022 (has links)
För klimatet spelar skogen en viktig roll eftersom den binder in koldioxid från atmosfären. Genom fotosyntes binds kolet in i biomassan och när organiskt material bryts ned bidrar det till kolinlagringar i marken. Idag finns det många studier om skogens kolinlagringar, men de undersöker endast nettoinbindningen av kolet i skogen och få studier visar hur mycket kol som totalt är inlagrat i en skog. Det finns inga studier om hur det ser ut i Sverige och det finns få studier som visar på skillnaden i kolinlagring mellan en produktionsskog och en urskog. I den här litteraturstudien presenterar jag hur mycket kol som är inbundet i den svenska skogen och hur det skiljer sig mellan produktionsskog och urskog. Genom att applicera data från en studie som undersökte hur mycket kol som är inbundet i skogen i Kanada på den svenska skogen kom jag fram till att det finns totalt mellan 5 413 och 6 798 miljoner ton kol inlagrat i den svenska skogen, men mer kol skulle kunna lagras. Medelåldern för när träd slutavverkas är i Sverige 101 år. Jag kom fram till att det lagras in ungefär 53 till 75 ton mer kol per hektar i en skog som är äldre än 140 år än i en skog som är mellan 101 och 120 år. Resultatet visar att det binds in mer kol i en urskog än i en produktionsskog och att det är viktigt att bevara de urskogar som idag finns för att kunna möta de klimatproblem vi står inför. / For the climate, the forest plays an important role because it binds carbon dioxide from the atmosphere. Through photosynthesis, carbon is bound into the biomass and degradable organic material contributes to carbon storage in the soil. There are many studies on the forest carbon deposits, but they only examine the net binding of carbon, and few studies show how much carbon is stored in total. There are no studies on what carbon storage looks like in Sweden and few studies that show the difference in carbon storage between production forests and old-growth forests. In this literature study, I present how much carbon is bound in Swedish forests and how it differs between production forest and old-growth forest. By applying data from a study that examined how much carbon is bound in Canadian forests on Swedish forests, I concluded that there is a total of between 5 413 and 6 798 million tonnes of carbon stored in Swedish forests, but more carbon could be stored. In Sweden, the average age for when trees are felled is 101 years. I concluded that approximately between 53 and 75 tonnes more carbon per hectare is stored in a forest that is older than 140 years than in a forest that is between 101 and 120 years. The results show that more carbon is bound in an old-growth forest than in a production forest and that it is important to preserve the old-growth forests to reduce the climate problems we face.

Page generated in 0.0862 seconds