Spelling suggestions: "subject:"carbon fibers."" "subject:"charbon fibers.""
71 |
Development of microwave absorbing diamond coated fibresYouh, Meng-Jey January 2000 (has links)
No description available.
|
72 |
Mecanismos de confinamento e suas implicações no reforço de pilares de concreto por encamisamento com compósito de fibras de carbono / Confinement effects and their implication on the strengthening of concrete columns by wrapping with carbon fiber composites.Carrazedo, Ricardo 25 April 2002 (has links)
Este trabalho aborda o efeito do confinamento desenvolvido em pilares de concreto armado reforçados com compósitos de fibras de carbono. Por meio do encamisamento é possível mobilizar o confinamento passivo do concreto, restringindo sua expansão lateral. Com o efeito do confinamento o concreto apresenta significativos ganhos de resistência e ductilidade. Efetuou-se uma análise experimental com pilares de seção transversal circular utilizando diferentes taxas de armadura transversal e variando-se o número de camadas do compósito. Observou-se a influência destas variáveis sobre a capacidade resistente e a deformabilidade destes pilares. Com o aumento do número de camadas de compósito ocorreram grandes acréscimos de capacidade resistente, mesmo com taxas de armadura transversal mais elevadas. O aumento da deformação última com o reforço foi grande no caso de pilares não armados. Em pilares com elevada taxa de armadura transversal não ocorreram ganhos significativos na deformação última. Verificou-se que em pilares de concreto armado reforçados com compósito de fibras de carbono, pode-se obter boas previsões do ganho de resistência utilizando-se modelos teóricos de confinamento adequados e a sobreposição de pressões laterais da camisa de reforço e da armadura transversal no núcleo. Foram ensaiados também pilares de seção transversal quadrada sem armaduras para verificar o efeito da forma da seção transversal. Observou-se que em seções quadradas a pressão lateral efetiva é menor se comparada com pilares de seção circular. / This work deals with the effect of confinement in reinforced concrete columns strengthened with carbon fiber composites. By wrapping, it is possible to mobilize the passive confinement of the concrete, restricting its lateral expansion. With the confinement, the concrete shows substantial gains in resistance and ductility. An experimental analysis of circular columns was carried out making use of different rates of transverse steel and numbers of composite layers. The influence of these variables over the load carrying capacity and deformability of these columns was observed. With an increased number of layers of the composite, there was a great increase in the load carrying capacity, even at high transverse steel rates. The increase in the ultimate strain given by the strengthening was great with unreinforced concrete columns. In columns with a high transverse steel rate there were no important gains in the ultimate strain. It was observed that in reinforced concrete columns strengthened with carbon fiber composites, one can very well foresee the gain in strength by using adequate analytical models of confinement and the overlaying of lateral pressures from the composite jacket and the transverse steel in the central core. Square columns without reinforcement bars were also subject to testing so as to investigate the effect of the shape of the cross-section. It was observable that in square sections the real lateral pressure is smaller when compared to circular columns.
|
73 |
Fibras de carbono modificadas com a álcool desidrogenase para o estudo da bioeletroxidação do etanol utilizando espectrometria de massas diferencial eletroquímica (DEMS) / Modified Carbon Fibers with the Alcohol Dehydrogenase for the Study of Bioeletroxidation of the Ethanol Using Differential Electrochemical Mass Spectrometry (DEMS)Souza, João Carlos Perbone de 21 November 2017 (has links)
Para a bioeletrocatálise de oxidação de etanol, a alteração da superfície eletródica e a otimização do processo de imobilização enzimática se fazem necessárias. Neste cenário, as fibras flexíveis de carbono (FFC) merecem destaque, pois além de sua superfície ser facilmente modificada devido à presença de carbono sp2, as mesmas possuem alta resistência mecânica e elasticidade, combinadas com a alta condutividade elétrica e térmica. Nesta tese de doutorado, apresenta-se como obter bioeletrodos de FFC modificadas com a enzima álcool desidrogenase (ADH) NAD-dependente, visando também aprimorar a oxidação da coenzima NADH (dinucleotídeo de nicotinamida e adenina). Os resultados mostram que quando as FCF são previamente submetidas a um tratamento oxidativo em meio ácido (KMnO4/H2SO4), obtém-se bioeletrodos estáveis, robustos e com alta área superficial. Além disso, observou-se que esses eletrodos possuem grupos funcionais contendo oxigênio que auxiliam na bioeletrocatálise de oxidação do etanol. Presume-se que presença de grupos quinonas seja responsável por facilitar a regeneração da coenzima, ou seja, estes grupos atuam decisivamente na oxidação do NADH. A alta qualidade dos bioeletrodos possibilitou manter a atividade catalítica da ADH por longo prazo, propriedade essa crucial para o estudo da oxidação do etanol acoplada à espectrometria de massas (DEMS). Devido a este estudo, foi possível observar concomitantemente a regeneração da coenzima (NADH -> NAD+) e a geração de acetaldeído como produto de bioeletroxidação do etanol, ambos em estado estacionário. Em suma, o estudo aqui apresentado introduz uma abordagem que combina não só o desenvolvimento de fibras de carbono tratadas quimicamente para aplicação em bioeletrocatálise, mas também um foco inédito no acoplamento entre a espectrometria de massas e a bioeletroquímica para a resolução de mecanismos enzimáticos. / Regarding the bioelectrocatalysis of the ethanol oxidation, the electrodic surface modification and the optimization of enzymatic immobilization are necessary. In this scenario, the flexible carbon fibers (FCF) are noteworthy, because besides their surface can be modified in an easy way due the presence of carbon sp2, they have high mechanical resistance and elasticity, combined with high electrical and thermal conductivity. In this doctoral thesis, it is presented how to obtain bioelectrodes of FFC modified with the enzyme alcohol dehydrogenase (ADH) NAD-dependent, as well as to improve the oxidation of the coenzyme NADH (nicotinamide adenine dinucleotide). The results show that when FCF is previously submitted to an oxidative treatment in acidic medium (KMnO4/H2SO4), stable, robust and high surface area bioelectrodes are obtained. In addition, it was observed that these electrodes have oxygen-containing functional groups that improve the bioelectrocatalysis of ethanol oxidation. There is proposed that the presence of quinone groups is responsible for facilitating the regeneration of the coenzyme, i. e., these groups act decisively in the oxidation of NADH. The high quality of the bioelectrodes allowed it to maintain the catalytic activity of the ADH for long term, property crucial for the study of the oxidation of ethanol coupled to mass spectrometry (DEMS). By using DEMS, there were possible to observe coenzyme regeneration and the generation of acetaldehyde as a bioelectrooxidation product of ethanol, both at steady state, which were simultaneously observed. In summary, the present study introduces an to an approach that combines not only the development of chemically treated carbon fibers for application in bioelectrocatalysis, but also an unprecedented focus on the coupling between mass spectrometry and bioelectrochemistry for the resolution of enzymatic mechanisms.
|
74 |
Shear strength of reinforced concrete T-beams strengthened using carbon fibre reinforced polymer (CFRP) laminatesLee, Tuan Kuan, 1976- January 2003 (has links)
Abstract not available
|
75 |
Tensile testing and stabilization/carbonization studies of polyacrylonitrile/carbon nanotube composite fibersLyons, Kevin Mark 14 November 2012 (has links)
This study focuses on the processing, structure and properties of polyacrylonitrile (PAN)/ carbon nanotube (CNT) composite carbon fibers. Small diameter PAN/CNT based carbon fibers have been processed using sheath-core and islands-in-a-sea (INS) fiber spinning technology. These methods resulted in carbon fibers with diameters of ~3.5 μm and ~1 μm (for sheath-core and INS respectively). Poly (methyl methacrylate) has been used as the sheath or the sea component, which has been removed prior to carbonization. These fibers have been stabilized and carbonized using a batch process. The effect of stabilization has been characterized by Fourier Transform Infrared Spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). A non-isothermal extent of cyclization (Mcyc) from the DSC kinetics study was developed in order to obtain an unbiased method for determining the optimal stabilization condition. The results of Mcyc were found to be in good agreement with the experimental FTIR and WAXD observations. The carbon fiber fracture surfaces have been examined using SEM. Various test parameters that affect the tensile properties of the precursor fiber (both PAN and PAN/CNT), as well as carbon fiber have been studied. In an attempt to validate single filament tests, fiber tow testing has also been done using standard test methods. Batch processed carbon fibers obtained via sheath-core geometry exhibited tensile strengths as high as 6.5 GPa, while fibers processed by islands-in-a-sea geometry exhibited strength values as high as 7.7 GPa.
|
76 |
Single Wall Carbon Nanotube/Polyacrylonitrile Composite FiberLiang, Jianghong 01 November 2004 (has links)
Single Wall Carbon Nanotubes (SWNTs), discovered in 1993, have good mechanical, electrical and thermal properties. Polyacrylonitrile (PAN) is an important fiber for textiles as well as a precursor for carbon fibers. PAN has been produced since 1930s.
In this study, we have processed SWNT/PAN fibers by dry-jet wet spinning. Purified SWNT, nitric acid treated SWNTs, and benzonitrile functionalized SWNTs have been used. Fiber processing was done in Dimethyl Formamide (DMF) and coagulation was done in DMF/water mixture. The coagulated fibers were drawn (draw ratio of 6) at 95 oC.
Structure, orientation, and mechanical properties of these fibers have been studied. The cross-sections for all the fibers are not circular. Incorporation of SWNT in PAN results in improved mechanical properties, tensile modulus increased from 7.9 GPa for control PAN to 13.7 GPa for SWNT/PAN composite fiber, and functionalized SWNTs result in higher improvements with tensile modulus reaching 17.8 GPa for acid treated SWNT/PAN composite fibers. The theoretical analysis suggests that observed moduli of the composite fibers are consistent with the predicted values.
|
77 |
Polyacrylonitrile / carbon nanotube composite fibers: effect of various processing parameters on fiber structure and propertiesChoi, Young Ho 15 November 2010 (has links)
This study elucidates the effect of various processing parameters on polyacrylonitrile (PAN) /carbon nanotube (CNT) composite fiber structure and properties. Interaction between PAN and MWNT enabled the gel-spun PAN/MWNT composite fiber to be drawn to a higher draw ratio, than the control PAN fiber, resulting in the composite fiber tensile strength value as high as 1.3 GPa. PAN/MWNT composite fibers were stabilized and carbonized, and the resulting fibers have been characterized for their structure and properties. The effect of precursor fiber shelf-time on the mechanical properties of the gel-spun PAN/MWNT composite fibers is also reported. A rheological study of PAN-co-MAA/few wall nanotube (FWNT) composite solution has been conducted. At low shear rates, the network of FWNTs contributes to elastic response, resulting in higher viscosity and storage modulus for the composite solution as compared to the control solution. On the other hand, at high shear rates, the network of FWNTs can be broken, resulting in lower viscosity for the composite solution than that for the control solution. Larger PAN crystal size (~16.2 nm) and enhanced mechanical properties are observed when the fiber was drawn at room temperature (cold-drawing) prior to being drawn at elevated temperature (~ 165 °C; hot-drawing). Azimuthal scan of wide angle X-ray diffraction (WAXD) and Raman G-band intensities were used for the evaluation of Herman's orientation factor for PAN crystal (fPAN) and FWNT (fFWNT), respectively. Significantly higher nanotube orientation was observed than PAN orientation at an early stage of fiber processing (i.e during spinning, cold-drawing). Differential scanning calorimetry (DSC) revealed that PAN-co-MAA fiber can be converted into cyclic structure at milder conditions than those for PAN. Continuous in-line stabilization, carbonization, and characterization of the resulting carbon fibers were carried out. Rheological and fiber spinning studies have also been carried out on PAN-co-MAA/VGCNF (vapor grown carbon nano fiber). The diameter of PAN-co-MAA/VGCNF composite fiber is smaller than that of the PAN-co-MAA control fiber with same draw ratio due to the suppressed die-swell in the presence of VGCNF. The mechanical properties of PAN-co-MAA control and PAN-co-MAA/VGCNF composite fibers were characterized. Crystalline structure and morphology of the solution-spun PAN-co-MAA/VGCNF fibers are characterized using WAXD and scanning electron microscopy (SEM), respectively. The volume fraction of PAN-CNT interphase in PAN matrix has been calculated to illustrate the impact of CNTs on structural change in PAN matrix, when ordered PAN molecules are developed in the vicinity of CNTs during fiber processing. The effect of PAN-CNT interphase thickness, CNT diameter, and mass density of CNT on volume fraction of PAN-CNT interphase has been explored.
|
78 |
Stabilization and carbonization studies of polyacrylonitrile /carbon nanotube composite fibersLiu, Yaodong 15 November 2010 (has links)
Carbon fibers contain more than 90 wt. % carbon. They have low density, high specific strength and modulus, and good temperature and chemical resistance. Therefore, they are important candidate as reinforcement materials. Carbon fiber is made by pyrolysing precursor polymers. Polyacrylonitrile (PAN) which has been used as precursor to produce high strength carbon fiber is used as precursor in this study. The theoretical tensile strength of carbon fibers can reach over 100 GPa. Currently, the best commercial carbon fibers reach only 7.5 GPa. To make good quality carbon fiber and to narrow the gap between theoretical values and currently achieved experimental properties, the entire manufacturing process including fiber spinning, stabilization and carbonization, needs to be improved optimized. In this dissertation, the stabilization processes of gel-spun PAN/carbon nanotubes (CNTs) composite fibers are studied.
PAN/CNT (1 wt. % CNT) composite fibers are spun by dry-jet gel-spinning. Three types of CNTs with different number of walls and varying catalyst content are used as additives. The effect of different types of CNTs on the properties of the stabilized fibers was compared. It is found that the CNTs with the highest surface area shows the best reinforcement efficiency on the tensile modulus, and reduces the formation of β-amino nitrile. The residual catalyst in the range of 1 to 4 wt. % shows little effect on the mechanical properties of the stabilized fibers.
Stabilization involves complex chemical reactions, including cyclization, oxidation, dehydration, and cross-linking. These complex reactions are separated by using different gas environments during stabilization. The cross-linking reaction has the highest activation energy among all stabilization reactions, and requires a temperature higher than 300 DegC to be completed. The effect of applied tension on the stabilized fiber properties are investigated, and it is found that higher tension leads to better properties for the stabilized fiber, including higher Young's modulus, higher orientation, less formation of β-amino nitrile, and less shrinkage.
The relationship between stabilization conditions and the mechanical properties of the carbonized fiber is investigated, and the methods to identify optimum stabilization conditions are proposed. It is observed that the highest tension should be applied during both stabilization and carbonization, and the mechanical properties of the resulting carbon fibers are increased if fibers are further stabilized at a temperature of ~ 320 DegC to improve the cross-linking degree as compared with the fibers only stabilized at 255 DegC. The optimum stabilization time depends on both the stabilization temperature and on the applied tension. A new characterization method by monitoring the dynamic mechanical properties, while stabilization is in progress is used to narrow down the range of the optimum stabilization time. Also, the effect of carbonization temperature on the ultimate carbon fiber properties is studied in the batch process carbonization. Preliminary studies are carried out to find the relationship between the structure and properties of precursor fibers and the tensile strength of carbon fibers, including mechanical properties and co-monomers of precursor fibers.
|
79 |
Strengthening and rehabilitation of steel bridge girders using CFRP laminatesAbd-El-Meguid, Ahmed Sabri. January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008. / Title from PDF title page (viewed Jan. 28, 2010). Additional advisors: Michael Anderson, Fouad Fouad, Wilbur Hitchcock, Virginia Sisiopiku. Includes bibliographical references (p. 203-208).
|
80 |
Development of a new spun concrete pole reinforced with carbon fiber reinforced polymer barsShalaby, Ashraf Mounir Mahmoud. January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007. / Title from PDF title page (viewed Feb. 5, 2010). Additional advisors: Ashraf Al Hamdan, Wilbur A. Hitchcock, Jason T. Kirby, Talat Salama. Includes bibliographical references (p. 148-153).
|
Page generated in 0.0587 seconds