Spelling suggestions: "subject:"cartier divisor"" "subject:"bartier divisor""
1 |
On the existence of jet schemes logarithmic along families of divisorsStaal, Andrew Phillipe 05 1900 (has links)
A section of the total tangent space of a scheme X of finite type over a field k, i.e. a vector field on X, corresponds to an X-valued 1-jet on X. In the language of jets the notion of a vector field becomes functorial, and the total tangent space constitutes one of an infinite family of jet schemes Jm(X) for m ≥ 0. We prove that there exist families of “logarithmic” jet schemes JDm(X) for m ≥ 0, in the category of k-schemes of finite type, associated to any given X and its family of divisors D = (D₁, . . . ,Dr). The sections of JD₁(X) correspond to so-called vector fields on X with logarithmic poles along the family of divisors D = (D₁, . . . ,Dr). To prove this, we first introduce the categories of pairs (X,D) where D is as mentioned, an r-tuple of (effective Cartier) divisors on the scheme X. The categories of pairs provide a convenient framework for working with only those jets that pull back families of divisors.
|
2 |
On the existence of jet schemes logarithmic along families of divisorsStaal, Andrew Phillipe 05 1900 (has links)
A section of the total tangent space of a scheme X of finite type over a field k, i.e. a vector field on X, corresponds to an X-valued 1-jet on X. In the language of jets the notion of a vector field becomes functorial, and the total tangent space constitutes one of an infinite family of jet schemes Jm(X) for m ≥ 0. We prove that there exist families of “logarithmic” jet schemes JDm(X) for m ≥ 0, in the category of k-schemes of finite type, associated to any given X and its family of divisors D = (D₁, . . . ,Dr). The sections of JD₁(X) correspond to so-called vector fields on X with logarithmic poles along the family of divisors D = (D₁, . . . ,Dr). To prove this, we first introduce the categories of pairs (X,D) where D is as mentioned, an r-tuple of (effective Cartier) divisors on the scheme X. The categories of pairs provide a convenient framework for working with only those jets that pull back families of divisors.
|
3 |
On the existence of jet schemes logarithmic along families of divisorsStaal, Andrew Philippe 05 1900 (has links)
A section of the total tangent space of a scheme X of finite type over a field k, i.e. a vector field on X, corresponds to an X-valued 1-jet on X. In the language of jets the notion of a vector field becomes functorial, and the total tangent space constitutes one of an infinite family of jet schemes Jm(X) for m ≥ 0. We prove that there exist families of “logarithmic” jet schemes JDm(X) for m ≥ 0, in the category of k-schemes of finite type, associated to any given X and its family of divisors D = (D₁, . . . ,Dr). The sections of JD₁(X) correspond to so-called vector fields on X with logarithmic poles along the family of divisors D = (D₁, . . . ,Dr). To prove this, we first introduce the categories of pairs (X,D) where D is as mentioned, an r-tuple of (effective Cartier) divisors on the scheme X. The categories of pairs provide a convenient framework for working with only those jets that pull back families of divisors. / Science, Faculty of / Mathematics, Department of / Graduate
|
Page generated in 0.066 seconds