• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control of G1 progression in fission yeast

Stern, Bodo January 1997 (has links)
No description available.
2

Characterisation of DP-1

Sorensin, Troels Seyffart January 1996 (has links)
No description available.
3

Analysis of the Schizosaccharomyces pombe DNA structure dependent checkpoint gene rad26

Davies, Rhian Jane January 1999 (has links)
No description available.
4

Phosphorylation of the retinoblastoma protein, pRB, by CDK4-cyclin D1

Zarkowska, Tamara Anna January 1999 (has links)
No description available.
5

HGF/Met-mediated Phosphorylation of Stathmin1 Serine 16 Regulates Cell Proliferation and not Metastasis

Deford, Paul 23 August 2022 (has links)
No description available.
6

Genetic and Functional Characterization of RUNX2

Stephens, Alexandre, N/A January 2007 (has links)
RUNX2 belongs to the RUNT domain family of transcription factors of which three have been identified in humans (RUNX1, RUNX2 and RUNX3). RUNX proteins are vital for metazoan development and participate in the regulation of cellular differentiation and cell cycle progression (Coffman, 2003). RUNX2 is required for proper bone formation by driving the differentiation of osteoblasts from mesenchymal progenitors during development (Ducy et al, 1997; Komori et al, 1997; Otto et al, 1997). RUNX2 is also vital for chondrocyte maturation by promoting the differentiation of chondrocytes to the hypertrophic phenotype (Enomoto et al, 2000). The consequences of completely disrupting the RUNX2 locus in mice provided compelling and conclusive evidence for the biological importance of RUNX2 where knockout mice died shortly after birth with a complete lack of bone formation (Komori et al, 1997; Otto et al, 1997). A further indication of the requisite role of RUNX2 in skeletal development was the discovery that RUNX2 haploinsufficiency in humans and mice caused the skeletal syndrome Cleidocranial Dysplasia (CCD) (Mundlos et al, 1997; Lee et al, 1997). A unique feature of RUNX2 is the consecutive polyglutamine and polyalanine tracts (Q/A domain). Mutations causing CCD have been observed in the Q/A domain of RUNX2 (Mundlos et al, 1997). The Q/A domain is an essential part of RUNX2 and participates in transactivation function (Thirunavukkarasu et al, 1998). Previous genotyping studies conducted in our laboratory identified several rare RUNX2 Q/A variants in addition to a frequently occurring 18 base pair deletion of the polyalanine tract termed the 11Ala allele. Analysis of serum parameters in 78 Osteoarthritis patients revealed the 11Ala allele was associated with significantly decreased osteocalcin. Furthermore, analysis of 11Ala allele frequencies within a Geelong Osteoporosis Study (GOS) fracture cohort and an appropriate age matched control group revealed the 11Ala allele was significantly overrepresented in fracture cases indicating an association with increased fracture risk. To further investigate the 11Ala allele and rare Q/A variants, 747 DNA samples from the Southeast Queensland bone study were genotyped using PCR and PAGE. The experiment served two purposes: 1) to detect additional rare Q/A variants to enrich the population of already identified mutants and 2) have an independent assessment of the effect of the 11Ala allele on fracture to either support or refute our previous observation which indicated the 11Ala allele was associated with an increased risk of fracture in the GOS. From the 747 samples genotyped, 665 were WT, 76 were heterozygous for the 11Ala allele, 5 were homozygous for the 11Ala allele and 1 was heterozygous for a rare 21 bp deletion of the polyglutamine tract. Chi-square analysis of RUNX2 genotype distributions within fracture and non-fracture groups in the Southeast Queensland bone study revealed that individuals that carried at least one copy of the 11Ala allele were enriched in the fracture group (p = 0.16, OR = 1.712). The OR of 1.712 was of similar magnitude to the OR observed in the GOS case-control investigation (OR = 1.9) providing support for the original study. Monte-Carlo simulations were used to combine the results from the GOS and the Southeast Queensland bone study. The simulations were conducted with 10000 iterations and demonstrated that the maximum probability of obtaining both study results by chance was less than 5 times in two hundred (p < 0.025) suggesting that the 11Ala allele of RUNX2 was associated with an increased fracture risk. The second element of the research involved the analysis of rare RUNX2 Q/A variants identified from multiple epidemiological studies of bone. Q/A repeat variants were derived from four populations: the GOS, an Aberdeen cohort, CAIFOS and a Sydney twin study. Collectively, a total of 20 rare glutamine and one alanine variants were identified from 4361 subjects. All RUNX2 Q/A variants were heterozygous for a mutant allele and a wild type allele. Analysis of incident fracture during a five year follow up period in the CAIFOS revealed that Q-variants (n = 8) were significantly more likely to have fractured compared to non-carriers (p = 0.026, OR 4.932 95% CI 1.2 to 20.1). Bone density data as measured by quantitative ultrasound was available for CAIFOS. Analysis of BUA and SOS Z-scores revealed that Q-repeat variants had significantly lower BUA (p = 0.031, mean Z-score of -0.79) and a trend for lower SOS (p = 0.190, mean Z-score of -0.69). BMD data was available for all four populations. To normalize the data across the four studies, FN BMD data was converted into Z-scores and the effect of the Q/A variants on BMD was analysed using a one sample approach. The analysis revealed Q/A variants had significantly lower FN BMD (p = 0.0003) presenting with a 0.65 SD decrease. Quantitative transactivation analysis was conducted on RUNX2 proteins harbouring rare glutamine mutations and the 11Ala allele. RUNX2 proteins containing a glutamine deletion (16Q), a glutamine insertion (30Q) and the 11Ala allele were overexpressed in NIH3T3 and HEK293 cells and their ability to transactivate a known target promoter was assessed. The 16Q and 30Q had significantly decreased reporter activity compared to WT in NIH3T3 cells (p = 0.002 and 0.016, for 16Q and 30Q, respectively). In contrast 11Ala RUNX2 did not show significantly different promoter activation potential (p = 0.54). Similar results were obtained in HEK293 cells where both the 16Q and 30Q RUNX2 displayed decreased reporter activity (p=0.007 and 0.066 for 16Q and 30Q respectively) whereas the 11Ala allele had no material effect on RUNX2 function (p = 0.20). The RUNX2 gene target reporter assay provided evidence to suggest that variation within the glutamine tract of RUNX2 was capable of altering the ability of RUNX2 to activate a known target promoter. In contrast, the 11Ala allele showed no variation in RUNX2 activity. The third feature of the research served the purpose of identifying potential RUNX2 gene targets with particular emphasis on discovering genes cooperatively regulated by RUNX2 and the powerful bone promoting agent BMP2. The experiment was conducted by creating stably transfected NIH3T3 cells lines overexpressing RUNX2 or BMP2 or both RUNX2 and BMP2. Microarray analysis revealed very few genes were differentially regulated between standard NIH3T3 cells and cells overexpressing RUNX2. The results were confirmed via RT-PCR analysis which demonstrated that the known RUNX2 gene targets Osteocalcin and Matrix Metalloproteinase-13 were modestly induced 2.5 fold (p = 0.00017) and 2.1 fold (p = 0.002) respectively in addition to identifying only two genes (IGF-II and SCYA11) that were differentially regulated greater than 10 fold. IGF-II and SYCA11 were significantly down-regulated 27.6 fold (p = 1.95 x 10-6) and 10.1 fold (p = 0.0002) respectively. The results provided support for the notion that RUNX2 on its own was not sufficient for optimal gene expression and required the presence of additional factors. To discover genes cooperatively regulated by RUNX2 and BMP2, microarray gene expression analysis was performed on standard NIH3T3 cells and NIH3T3 cells stably transfected with both RUNX2 and BMP2. Comparison of the gene expression profiles revealed the presence of a large number of differentially regulated genes. Four genes EHOX, CCL9, CSF2 and OSF-1 were chosen to be further characterized via RT-PCR. Sequential RT-PCR analysis on cDNA derived from control cells and cells stably transfected with either RUNX2, BMP2 or both RUNX2/BMP2 revealed that EHOX and CSF2 were cooperatively induced by RUNX2 and BMP2 whereas CCL9 and OSF-1 were suppressed by BMP2. The overexpression of both RUNX2 and BMP2 in NIH3T3 fibroblasts provided a powerful model upon which to discover potential RUNX2 gene targets and also identify genes synergistically regulated by BMP2 and RUNX2. The fourth element of the research investigated the role of RUNX2 in the ascorbic acid mediated induction of MMP-13 mRNA. The study was carried out using NIH3T3 cell lines stably transfected with BMP2, RUNX2 and both BMP2 and RUNX2. The cell lines were grown to confluence and subsequently cultured for a further 12 days in standard media or in media supplemented with AA. RT-PCR analysis was used to assess MMP-13 mRNA expression. The RT-PCR results demonstrated that AA was not sufficient for inducing MMP-13 mRNA in NIH3T3 cells. In contrast RUNX2 significantly induced MMP-13 levels 85 fold in the absence of AA (p = 0.0055) and upregulated MMP-13 mRNA levels 254 fold in the presence of AA (p = 0.0017). The results demonstrated that RUNX2 was essential for the AA mediated induction of MMP-13 mRNA in NIH3T3 cells. The effect of BMP2 on MMP-13 expression was also investigated. BMP2 induced MMP-13 mRNA transcripts a modest 3.8 fold in the presence of AA (p = 0.0027). When both RUNX2 and BMP2 were overexpressed in the presence of AA, MMP-13 mRNA levels were induced a massive 4026 fold (p = 8.7 x 10-4) compared to control cells. The investigation revealed that RUNX2 was an essential factor for the AA mediated induction of MMP-13 and that RUNX2 and BMP2 functionally cooperated to regulate MMP-13 mRNA levels.
7

Alkaloidy rostlin čeledi Amaryllidaceae jako potenciální léčiva v terapii civilizačních onemocnění / Alkaloids of the Amaryllidaceae family as potential drugs in therapy of diseases of affluence

Breiterová, Kateřina January 2019 (has links)
Charles University, Faculty of Pharmacy in Hradec Králové Department of Pharmaceutical Botany Candidate: Mgr. Kateřina Breiterová Supervisor: Assoc. prof. Ing. Lucie Cahlíková PhD. Title of Doctoral Thesis: Alkaloids of the Amaryllidaceae family as potential drugs in therapy of diseases of affluence Key words: alkaloids, Amaryllidaceae, analogues, AChE, BuChE, POP, GSK-3β, cell cycle progression, apoptosis Narcissus cv. Professor Einstein was chosen based on results of previous screening studies for detailed phytochemical work for the purpose of isolation of the widest range of AmA. From 34,3 kg of fresh bulbs was obtained 31,7 g of purified alkaloidal extract, which was processed using column chromatography with stepwise elution by light petrol, chloroform and ethanol in different ratios to almost 500 fractions. These fractions were fused into 27 subfractions, which were processed by preparative TLC, vacuum column chromatography and crystallization. Finally, 25 pure alkaloids were isolated. All compounds were identified by GC-MS, ESI-MS, NMR, optical rotation and literature. One compound was identified as a new unpublished alkaloid of lycorine structure type. All alkaloids isolated in sufficient amount were tested for their biological activities associated with Alzheimer's disease (inhibition of...
8

The evaluation of the effects of semi-purified extracts of Commelina benghalensis on the molecular events associated with the growth, apoptosis and cell cycle progression of Jurkat-T cells

Lebogo, Kgomotso Welheminah January 2007 (has links)
Thesis (M.Sc. (Biochemistry )) --University of Limpopo, 2007 / Refer to document / The Cannon Collins Trust Fund and the National Research Foundation
9

Role of Protein Kinase C-iota in Glioblastoma

Desai, Shraddha R. 01 January 2011 (has links)
The focus of this research was to investigate the role of protein kinase C-iota (PKC-é) in the regulation of Bad function, a pro-apoptotic member of the Bcl-2 family and Cdk7 function, a master cell cycle regulator in glioblastoma. The results were obtained from the human glial tumor derived cell lines, T98G and U87MG. In these cells, PKC-é co-localized and directly associated with Bad as shown by immunofluorescence, immunoprecipitation, and Western blotting. Furthermore, in-vitro kinase activity assay showed that PKC-é directly phosphorylated Bad at phospho specific residues, S112, S136 and S155 which in turn induced inactivation of Bad and disruption of the Bad/Bcl-XL dimer. Knockdown of PKC-é by siRNA exhibited a corresponding reduction in Bad phosphorylation suggesting that PKC-é may be a Bad kinase. Since, PKC-é is an essential downstream mediator of the PI (3)-kinase, we hypothesize that glioma cell survival is mediated via a PI (3)-kinase/PDK1/PKC-é/Bad pathway. Treatment with PI(3)-kinase inhibitors Wortmannin and LY294002, as well as PDK1 siRNA, inhibited PKC-é activity and subsequent phosphorylation of Bad suggesting that PKC-é regulates the activity of Bad in a PI (3)-kinase dependent manner. Robust expression of PKC-é is a hallmark of human glioma and benign and malignant meningiomas, however, little is understood about its role in glioma cell proliferation. The cyclin dependent kinase activating kinase complex (CAK), comprises of cyclin dependent kinase 7 (Cdk7), cyclin H and MAT1, is the master cell regulator. Cdk7 phosphorylates its downstream cyclin dependent kinases (cdks) and promotes cell proliferation. Results show that PKC-é directly associated and phosphorylated Cdk7 at T170. Furthermore, Cdk7 phosphorylated its downstream target, cyclin dependent kinase 2 (cdk2) at T160. Purified PKC-é was also observed to phosphorylate endogenous as well as exogenous Cdk7. PKC-é knockdown with siRNA, PDK1 siRNA and (PI) 3-kinase inhibitors, Wortmannin and LY294002 treatment exhibited corresponding reduction in phosphorylation of Cdk7 and subsequently cdk2. In addition, PKC-é knockdown reduced cell proliferation; led to cell cycle arrest and also induced apoptosis. Thus, these findings suggest the presence of a novel PI (3)-kinase/PKC-é/BAD mediated cell survival and PI (3)-kinase/PKC-é/Cdk7 mediated cell proliferation pathway.
10

Proteolysis of a histone acetyl reader, ATAD2, induces chemoresistance of cancer cells under severe hypoxia by inhibiting cell cycle progression in S phase / ヒストンアセチル化リーダータンパク質ATAD2の分解を介した低酸素がん細胞の化学療法抵抗性獲得機構

Haitani, Takao 23 May 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24801号 / 医博第4993号 / 新制||医||1067(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 鈴木 実, 教授 溝脇 尚志, 教授 江木 盛時 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM

Page generated in 0.096 seconds