Spelling suggestions: "subject:"cellules MIN6B1"" "subject:"ellules MIN6B1""
1 |
Glucolipotoxicité dans les cellules bêta pancréatiques / Glucotoxicity in pancreatic beta cellsCassel, Roméo 21 November 2014 (has links)
Le diabète de type 2 est une pathologie chronique complexe associant une altération de sécrétion de l'insuline par le pancréas et une résistance à l'insuline au niveau des tissus périphériques, notamment au niveau du foie et du muscle squelettique. Son origine est multifactorielle, alliant des anomalies génétiques et environnementales, en particulier nutritionnelles. Un des mécanismes par lesquels les facteurs nutritionnels (comme les glucides et les lipides en excès) contribuent au développement du diabète et à son aggravation est la glucolipotoxicité. En effet, l'élévation de la glycémie et des lipides plasmatiques, ainsi que l'accumulation ectopique de lipides dans les tissus, participent au développement de l'insulinorésistance hépatique et musculaire et aux dysfonctions des cellules bêta, en partie via l'induction d'un stress métabolique, impliquant notamment le stress oxydant, le stress du réticulum endoplasmique (RE) et la perturbation de l'homéostasie calcique. Nous avons étudié les effets de la glucotoxicité et de la lipotoxicité dans les cellules bêta pancréatiques et les mécanismes impliqués. Nous nous sommes aussi intéressés à des traitements potentiellement protecteurs de la fonction bêta-pancréatique. Nous avons fait l'hypothèse que les effets bénéfiques de l'inhibition du système rénine-angiotensine sur l'incidence du diabète de type 2 chez l'homme étaient médiés par une action directe sur les cellules bêta. Nos résultats montrent que le glucose chronique à une dose élevée entraine une réduction de la sécrétion d'insuline des cellules bêta des îlots de Langerhans humains par une action conjointe sur le stress du RE, le stress oxydant et l'homéostasie calcique. L'inhibition du SRA a permis de restaurer cette fonction grâce notamment à une action inhibitrice sur la voie Phospholipase C-IP3-Calcium / This study addressed the hypothesis that inhibiting the soluble epoxide hydrolase (sEH)-mediated degradation of epoxy-fatty acids, notably epoxyeicosatrienoic acids, has an additional impact against cardiovascular damage in type 2 diabetes, beyond its previously demonstrated beneficial effect on glucose homeostasis. The cardiovascular and metabolic effects of the sEH inhibitor t- AUCB (10 mg/l in drinking water) were compared to those of the sulfonylurea glibenclamide (80 mg/l), both administered for 8 weeks in FVB mice subjected to a high-fat diet (HFD, 60% fat) for 16 weeks. Mice on control chow diet (10% fat) and non-treated HFD mice served as controls. Glibenclamide and t-AUCB similarly prevented the increased fasting glycemia in HFD mice but only t-AUCB improved glucose tolerance and decreased gluconeogenesis, without modifying weight gain. Moreover, t-AUCB reduced adipose tissue inflammation, plasma free fatty acids and LDL cholesterol, and prevented hepatic steatosis. Furthermore, only the sEH inhibitor improved endothelium-dependent relaxations to acetylcholine, assessed by myography in isolated coronary arteries. This improvement was related to a restoration of epoxyeicosatrienoic acid and nitric oxide pathways, as shown by the increased inhibitory effects of the NO-synthase and cytochrome P450 epoxygenase inhibitors, L-NA and MSPPOH, on these relaxations. Moreover, t-AUCB decreased cardiac hypertrophy, fibrosis and inflammation, and improved diastolic function, as demonstrated by the increased E/A ratio (echocardiography) and decreased slope of the enddiastolic pressure-volume relation (invasive hemodynamics). These results demonstrate that she inhibition improves coronary endothelial function and prevents cardiac remodeling and diastolic dysfunction in obese type 2 diabetic mice
|
Page generated in 0.0447 seconds