• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 18
  • 13
  • 3
  • 1
  • Tagged with
  • 106
  • 106
  • 106
  • 24
  • 16
  • 16
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Optimal sysnthesis of storageless batch plants using the Process Intermediate Storage Operational policy

Pattinson, Thomas. January 2007 (has links)
Thesis (M.Eng. (Chemical Engineering)) -- University of Pretoria, 2007. / Includes bibliographical references (leaves 69-73)
72

Quantifying plant model parameter effects on controller performance /

Rogalsky, Dennis Wayne. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (leaves 82-87).
73

Multi-objective, plant-wide control and optimization of chemical processes /

Yan, Ming, January 1996 (has links)
Thesis (Ph. D.)--University of Washington, 1996. / Vita. Includes bibliographical references (p. [119]-126).
74

Computer aided synthesis of optimal multicomponent separation sequences

Hendry, John Edward, January 1972 (has links)
Thesis (Ph. D.)--The University of Wisconsin--Madison, 1972. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliography.
75

Sequential decision-making under uncertainty /

Warren, Adam L. January 2004 (has links)
Thesis (Ph.D.)--McMaster University, 2005. / Includes bibliographical references (leaves 180-190). Also available online.
76

Studies on process synthesis and process integration

Fien, Gert-Jan A. F. 03 August 2007 (has links)
This thesis discusses topics in the field of process engineering that have received much attention over the past twenty years: (1) conceptual process synthesis using heuristic shortcut methods and (2) process integration through heat-exchanger networks and energy-saving power and refrigeration systems. The shortcut methods for conceptual process synthesis presented in Chapter 2, utilize Residue Curve Maps in ternary diagrams and are illustrated with examples of processes for separating azeotropic mixtures. This chapter constitutes a comprehensive review of the most relevant literature of the last twenty years and was itself accepted for publication in Industrial and Engineering Chemistry Research in the Spring of 1994. We demonstrate the usefulness of RCMs as both a tool for teaching the complex techniques necessary for separating azeotropic mixtures and as a practical engineering aid for conceptual design of separation processes. We also give proper clarifications of some traditional misconceptions and contradicting recommendations in the literature. The introduction to and demonstration of process-integration topics in Chapters 3 through 6 are of value to both new and more experienced process engineers. The in-depth treatment of meaningful case studies in Chapters 4, 5 and 6 contain much useful information concerning complex heat-integration and process-retrofit problems. Chapter 4 discusses aspects of multiple-pinch heat-integration problems and ways to tackle them with two of the latest commercial process-integration softwares. Chapter 5 presents a review of and an extension to an Ethylene Plant Retrofit case study taken from the ADVENT Examples Manual (Aspen Technology, 1993), while Chapter 6 does the same for an Ethylene Plant Retrofit case study published earlier by the CACHE Corporation in 1985. / Ph. D.
77

Sieve plate distillation dynamics

Fogle, John Boyden January 1966 (has links)
This dissertation is a study of the composition dynamics of a bench size sieve-plate distillation column. The column was 2-3/4 inches in diameter, 30 inches in length, and contained 10 sieve-plates spaced 2-1/4 inches apart. A benzene-toluene mixture was used as the feed to the column. The pulse testing method for obtaining dynamic information was used. The column was upset by introducing a rectangular pulse increase in benzene composition in the feed stream. The response of each plate was measured in the form of temperature and was converted to a composition response. Frequency response curves were determined for each plate from the pulse response. For the frequency response analysis, the forcing function of a plate was considered to be a weighted sum of the compositions of the liquid and vapor streams entering the stage, while the output function was considered to be the liquid composition on the plate near the exit downcomer. The resulting frequency response was relatively flat in the frequency region of primary interest. The flatness of the frequency response was attributed to poor liquid mixing on tha plates. Based on the experimental observations, a plate in the column may be mathematically represented by a dead time and a steady-state gain. / Ph. D.
78

Analysis of process data with singular spectrum methods

Barkhuizen, Marlize 12 1900 (has links)
Thesis (MScIng)--University of Stellenbosch, 2003. / ENGLISH ABSTRACT: The analysis of process data obtained from chemical and metallurgical engineering systems is a crucial aspect of the operating of any process, as information extracted from the data is used for control purposes, decision making and forecasting. Singular spectrum analysis (SSA) is a relatively new technique that can be used to decompose time series into their constituent components, after which a variety of further analyses can be applied to the data. The objectives of this study were to investigate the abilities of SSA regarding the filtering of data and the subsequent modelling of the filtered data, to explore the methods available to perform nonlinear SSA and finally to explore the possibilities of Monte Carlo SSA to characterize and identify process systems from observed time series data. Although the literature indicated the widespread application of SSA in other research fields, no previous application of singular spectrum analysis to time series obtained from chemical engineering processes could be found. SSA appeared to have a multitude of applications that could be of great benefit in the analysis of data from process systems. The first indication of this was in the filtering or noise-removal abilities of SSA. A number of case studies were filtered by various techniques related to SSA, after which a number of neural network modelling strategies were applied to the data. It was consistently found that the models built on data that have been prefiltered with SSA outperformed the other models. The effectiveness of localized SSA and auto-associative neural networks in performing nonlinear SSA were compared. Both techniques succeeded in extracting a number of nonlinear components from the data that could not be identified from linear SSA. However, it was found that localized SSA was a more reliable approach, as the auto-associative neural networks would not train for some of the data or extracted nonsensical components for other series. Lastly a number of time series were analysed using Monte Carlo SSA. It was found that, as is the case with all other characterization techniques, Monte Carlo SSA could not succeed in correctly classifying all the series investigated. For this reason several tests were used for the classification of the real process data. In the light of these findings, it was concluded that singular spectrum analysis could be a valuable tool in the analysis of chemical and metallurgical process data. / AFRIKAANSE OPSOMMING: Die analise van chemise en metallurgiese prosesdata wat verkry is vanaf chemiese of metallurgiese ingenieursstelsels is ‘n baie belangrike aspek in die bedryf van enige proses, aangesien die inligting wat van die data onttrek word vir prosesbeheer, besluitneming of die bou van prosesmodelle gebruik kan word. Singuliere spektrale analise is ‘n relatief nuwe tegniek wat gebruik kan word om tydreekse in hul onderliggende komponente te ontbind. Die doelwitte van hierdie studie was om ‘n omvattende literatuuroorsig oor die ontwikkeling van die tegniek en die toepassing daarvan te doen, beide in die ingenieursindustrie en in ander navorsingsvelde, die navors van die moontlikhede van SSA aangaande die verwydering van geraas uit die data en die gevolglike modellering van die skoon data te ondersoek, ‘n ondersoek te doen na sommige van die beskikbare tegnieke vir nie-lineêre SSA en laastens ‘n studie te maak van die potensiaal van Monte Carlo SSA vir die karakterisering en identifikasie van data verkry vanaf prosesstelsels. Ten spyte van aanduidings in die literatuur dat SSA wydverspreid toegepas word in ander navorsingsvelde, kon geen vorige toepassings gevind word van SSA op chemiese prosesse nie. Dit wil voorkom asof die chemiese nywerhede groot baat kan vind by SSA van prosesdata. Die eerste aanduiding van hierdie voordele was in die vermoë van SSA om geraas te verwyder uit tydreekse. ‘n Aantal tipiese gevalle is ondersoek deur van verskeie benaderings tot SSA gebruik te maak. Nadat die geraas uit die tydreekse van die toetsgevalle verwyder is, is neurale netwerke gebruik om die prosesse te modelleer. Daar is herhaaldelik gevind dat die modelle wat gebou is op data wat eers deur SSA skoongemaak is, beter presteer as die wat slegs op die onverwerkte data gepas is. Die effektiwiteit van lokale SSA en auto-assosiatiewe neurale netwerke om nie- lineêre SSA toe te pas is ook vergelyk. Albei tegnieke het daarin geslaag om nie- lineêre hoofkomponente van die data te onttrek wat nie geïdentifiseer kon word deur die lineêre benadering nie. Daar is egter gevind dat lokale SSA ‘n meer betroubare tegniek is, aangesien die autoassosiatiewe neurale netwerke nie op sommige van die datastelle wou leer nie en vir ander tydreekse sinnelose hoofkomponente onttrek het. Laastens is ‘n aantal tydreekse geanaliseer met behulp van Monte Carlo SSA. Soos met alle ander karakteriseringstegnieke, kon Monte Carlo SSA nie daarin slaag om al die tydreekse wat ondersoek is korrek te identifiseer nie. Om hierdie rede is ‘n kombinasie van toetse gebruik om die onbekende tydreekse te klassifiseer. In die lig van al hierdie bevindinge, is die gevolgtrekking gemaak dat singuliere spektrale analise ‘n waardevolle hulpmiddel kan wees in die analise van chemiese en metallurgiese prosesdata.
79

Multivariate nonlinear time series analysis of dynamic process systems

Jemwa, Gorden Takawadiyi 04 1900 (has links)
Thesis (MScIng)--University of Stellenbosch, 2003. / ENGLISH ABSTRACT: Physical systems encountered in process engineering are invariably ill-defined, multivariate, and exhibit complex nonlinear dynamical behaviour. The increasing demands for better process efficiency and high product quality have led to the development and implementation of advanced control strategies in process plants. These modern control strategies are based on the use of a mathematical model defined for the process. Traditionally, linear models have been used to approximate the dynamics of processes whereas most processes are governed by nonlinear mechanisms. Since linear systems theory is well-established whereas nonlinear systems theory is not, recent developments in nonlinear dynamical systems theory present opportunities for improved approaches in modelling these process systems. It is now known that a nonlinear description of a process can be obtained from using time-delayed copies reconstructed from measurements taken from the process. Due to low signal to noise ratios associated with measured data it is logical to exploit redundant information in multivariate time signals taken from the systems in reconstructing the underlying dynamics. This study investigated the extension of univariate nonlinear time series analysis to the situation where multivariate measurements are available. Using simulated data from a coupled continuously stirred tank reactor and measured data from a flotation process system, the comparative advantages of using multivariate and univariate state space reconstructions were investigated. With respect to detection of nonlinearity multivariate surrogate analysis were found to give potentially robust results because of preservation of cross-correlations among components in the surrogate data. Multivariate local linear models showed a deterministic structure in both small and large neighbourhood sizes whereas for scalar embeddings determinism was defined only in smaller neighbourhood sizes. Non-uniform multivariate embeddings gave local linear models that resembled models from a trivial reconstruction of the original state space variables. With regard to global nonlinear modelling, multivariate embeddings gave models with better predictability irrespective of the model class used. Further improvements in the performance of models were obtained for multivariate non-uniform embeddings. A relatively new statistical learning algorithm, the least-squares support vector machine (LSSVM), was evaluated using multilayer perceptrons (MLP) as a benchmark in modelling nonlinear time series using simulated and plant data. It was observed that in the absence of autocorrelations in the variables and sparse data LSSVMs performed better than MLPs. Simulation of trained models gave consistent results for the LSSVMs, which was not the case for MLPs. However, the computational costs incurred in training the LSSVM model was significantly higher than for MLPs. LSSVMs were found to be insensitive to dimensionality reduction methods whereas the performance of MLPs degraded with increasing complexity of the dimension reduction method. No relative merits were found for using complex subspace dimension reduction methods for the data used. No general conclusions could be drawn with respect to the relative superiority of one class of models method over the other. Spatiotemporal structures are routinely observed in many chemical systems, such as reactive-diffusion and other pattern forming systems. We investigated the modelling of spatiotemporal time series using the coupled logistic map lattice as a case study. It was found that including both spatial and temporal information improved the performance of the fitted models. However, the superiority of spatiotemporal embeddings over individual time series was found to be defined for certain choices of the spatial and temporal embedding parameters. / AFRIKAANSE OPSOMMING: Fisiese stelsels wat in prosesingenieurswese voorkom is dikwels nie goed gedefinieer nie, multiveranderlik en vertoon komplekse nie-lineˆere gedrag. Toenemende vereistes vir ho¨e prosesdoeltreffendheid en produkgehalte het gelei tot die ontwikkeling en implementering van gevorderde beheerstrategie¨e vir prosesaanlegte. Hierdie morderne beheerstrategie¨e is gebaseer op die gebruik van wiskundige prosesmodelle. Lineˆere modelle word gewoonlik ontwikkel, al is die onderliggende prosesmeganismes in die algemeen nie-lineˆere, aangesien lineˆere stetselteorie goed gevestig is, en nie-line¨ere stelselteorie nie. Onlangse verwikkelinge in die teorie van nie-lineˆeredinamiese stelsels bied egter geleenthede vir verbeterde modellering van prosesstelsels. Dit is bekend dat ‘n nie-lineˆere beskrywing van ‘n progses verkry kan word deur tydvertraagde kopie¨e van metings van die prosesse te rekonstrueer. Met die lae seintot- geraasverhoudings wat met gemete data geassosieer word, is dit logies om die oortollige informasie in meerveranderlike seine te benut tydens die rekonstruksie van die onderliggende prosesdinamika. In die tesis is die uitbreiding van enkel-veranderlike nie-lineˆere tydreeksontleding na meer-veranderlike stelsels ondersoek. Met data van twee aaneengeskakelde gesimuleerde geroerde tenkreaktore en werklike data van ‘n flottasieproses, is die meriete van enkel- en meerveranderlike rekonstruksies van toestandruimtes ondersoek. Meerveranderlike surrogaatdata-ontleding het nie-lineariteite in die data op ‘n meer robuuste wyse ge¨ıdentifiseer, a.g.v. die behoud van kruis-korrelasies in die komponente van die data. Meerveranderlike lokale lineˆere modelle het ‘n deterministiese struktuur in beide klein en groot naasliggende omgewings ge¨ıdentifiseer, terwyl enkelveranderlike metodes dit slegs vir klein naasliggende omgewings kon doen. Nie-uniforme meerveranderlike inbeddings het lokale lineˆere modelle gegenereer wat soos globale modelle afkomstig van triviale rekonstruksies van die data gelyk het. M.b.t globale nie-lineˆere modellering, het meerveranderlike inbedding deurgaans beter modelle opgelewer. Verdere verbetering in die prestasie van modelle kon verkry word d.m.v. meerveranderlike nie-uniforme inbedding. ‘n Relatief nuwe statistiese algoritme, die kleinste-kwadrate-steunvektormasjien (KKSVM) is ge¨evalueer teenoor multilaag-perseptrons (MLP) as ‘n standaard vir die modellering van nie-lineˆere tydreekse, deur gebruik te maak van gesimuleerde en werklike aanlegdata. Daar is gevind dat die KKSVM beter presteer het as die MLPs wanneer die opeenvolgende waarnemings swak gekorreleer en min was relatief tot die aantal veranderlikes. Die KKSVMs het beduidend langer geneem as die MLPs om te ontwikkel. Hulle was ook minder sensitief vir die metodes wat gevolg is om die dimensionaliteit van die data te verlaag, anders as die MLPs. Ook is gevind dat meer komplekse metodes tot die verlaging van die dimensionaliteit weinig nut gehad het. Geen algemene gevolgtrekkings kan egter gemaak word m.b.t die verskillende modelle nie. Ruimtelik-temporale strukture word algemeen waargeneem in baie chemiese stelsels, soos reaktiewe diffusie e.a. patroonvormende sisteme. Die modellering van ruimtelik-temporale stelsels is bestudeer aan die hand van ‘n gekoppelde logistiese projeksierooster. Insluiting van beide die ruimtelike en temporale inligting het tot beduidend beter modelle gelei, solank as wat di´e inligting op die regte wyse ontsluit is.
80

Detecting change in complex process systems with phase space methods

Botha, Paul Jacobus 12 1900 (has links)
Model predictive control has become a standard for most control strategies in modern process plants. It relies heavily on process models, which might not always be fundamentally available, but can be obtained from time series analysis. The first step in any control strategy is to identify or detect changes in the system, if present. The detection of such changes, known as dynamic changes, is the main objective of this study. In the literature a wide range of change detection methods has been developed and documented. Most of these methods assume some prior knowledge of the system, which is not the case in this study. Furthermore a large number of change detection methods based on process history data assume a linear relationship between process variables with some stochastic influence from the environment. These methods are well developed, but fail when applied to nonlinear dynamic systems, which is focused on in this study. A large number of the methods designed for nonlinear systems make use of statistics defined in phase space, which led to the method proposed in this study. The correlation dimension is an invariant measure defined in phase space that is sensitive to dynamic change in the system. The proposed method uses the correlation dimension as test statistic with and moving window approach to detect dynamic changes in nonlinear systems. The proposed method together with two dynamic change detection methods with different approaches was applied to simulated time series data. The first method considered was a change-point algorithm that is based on singular spectrum analysis. The second method applied to the data was mutual cross prediction, which utilises the prediction error from a multilayer perceptron network. After the proposed method was applied to the data the three methods’ performance were evaluated. Time series data were obtained from simulating three systems with mathematical equations and observing one real process, the electrochemical noise produced by a corroding system. The three simulated systems considered in this study are the Belousov-Zhabotinsky reaction, an autocatalytic process and a predatory-prey model. The time series obtained from observing a single variable was considered as the only information available from the systems. Before the change detection methods were applied to the time series data the phase spaces of the systems were reconstructed with time delay embedding. All three the methods were able to do identify the change in dynamics of the time series data. The change-point detection algorithm did however produce a haphazard behaviour of its detection statistic, which led to multiple false alarms being encountered. This behaviour was probably due to the distribution of the time series data not being normal. The haphazard behaviour reduces the ability of the method to detect changes, which is aggravated by the presence of chaos and instrumental or measurement noise. Mutual cross prediction is a very successful method of detecting dynamic changes and is quite robust against measurement noise. It did however require the training of a multilayer perceptron network and additional calculations that were time consuming. The proposed algorithm using the correlation dimension as test statistic with a moving window approach is very useful in detecting dynamic changes. It produced the best results on the systems considered in this study with quick and reliable detection of dynamic changes, even in then presence of some instrumental noise. The proposed method with the correlation dimension as test statistic was the only method applied to the real time series data. Here the method was successful in distinguishing between two different corrosion phenomena. The proposed method with the correlation dimension as test statistic appears to be a promising approach to the detection of dynamic change in nonlinear systems.

Page generated in 0.1317 seconds