• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 14
  • Tagged with
  • 31
  • 31
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Chemische Struktur und ihre Entstehung in dünnen Epoxid- und Polyurethanschichten auf Metallen

Wehlack, Carsten January 2008 (has links)
Zugl.: Saarbrücken, Univ., Diss., 2008
22

Application of NMR spectroscopy to structural studies of lignin /

Ämmälahti, Erja. January 1999 (has links) (PDF)
Thesis (doctoral)--University of Helsinki, 1999. / Includes bibliographical references. Also available on the World Wide Web.
23

Entwicklung eines Modells zur Vorhersage der Lagerstabilität von sprühgetrocknetem D-Limonen

Kamphoff, Marion January 2009 (has links)
Zugl.: Bonn, Univ., Diss.
24

Untersuchungen zur Struktur von amorphem Siliziummonoxid

Hohl, Achim. Unknown Date (has links)
Techn. Universiẗat, Diss., 2002--Darmstadt.
25

NMR-spektroskopische Untersuchungen der Excisionase aus Bakteriophage HK022 sowie des Elektronentransferkomplexes des Cytochrom c 552 und der Cu A-Domäne aus Thermus thermophilus

Mureşanu, Lucia. Unknown Date (has links)
Universiẗat, Diss., 2006--Frankfurt (Main).
26

Norbornen-Homopolymerisation und Copolymerisation mit Ethen und CO mit homogenen Übergangsmetall-Katalysatoren sowie Untersuchung der Polymermikrostrukturen

Karafilidis, Christos. Unknown Date (has links)
Universiẗat, Diss., 2004--Düsseldorf.
27

Einfluss chemischer und topographischer Inhomogenitäten auf die Eigenschaften von Polymeroberflächen

Synytska, Alla 02 November 2005 (has links)
This work aimed to elucidate basic aspects of the influence of chemical structure and surface topography on the surface properties of a polymer material in order to minimize the work of adhesion. End-functionalised aromatic perfluorinated oligo/polyesters have been chosen to clarify effect of chemical structure. Here, the comprehensive investigation of the influence of molecular architecture on processes of fluorine segregation in the topmost surface layer and surface properties of the end-functionalised aromatic perfluorinated linear and branched oligo-and polyesters were performed. It has been shown, that the character of the surface segregation of fluorinated moieties can be influenced by different factors i.e. conditions of preparation of polymer layers (by means of spin-coated and melt films), chemical structure of fluorinated tail and polymer backbone and slightly by molecular weight. Analysis of obtained results allows distinguishing contribution of each factor. Experimentally obtained results showed a good correlation with Scheutjens-Fleer self-consistent mean-field theory extended by Kumar and Koberstein, which corresponds to the surface segregation of various chemical functional moieties located on functional polymers of different architectures. In correlation with a self-consistent field approach, observed results confirmed that polymers with end fluorinated groups are promising for producing of low-energy surfaces.The effect of surface topography has been studied on the example of regular and irregular structured surfaces fabricated from core-shell particles. A simple and effective approach for designing regularly patterned surfaces with specifically designed surface roughness and chemistry using core-shell colloidal particles was demonstrated. The chemistry was varied by covalent grafting of polymer brushes onto silica particles or by chemisorption of fluorosilane. The modified colloidal spheres were organized into closely packed hemispherical hexagonal arrays either by a vertical deposition technique or by sedimentation on slightly inclined coated silicon wafers. In this way, an increase in the vertical roughness was achieved with increasing particle radius, but without changing the Wenzel roughness factor. Controllable variations in the surface chemistry and morphology were used for a systematic study of the wetting phenomenon on regular structured arrays. The regularity and periodicity of particle structures allowed modelling of wetting. The wetting was modelled according to WENZEL, CASSIE-BAXTER, EXTRAND theories as well as minimal and maximal possible contact angles introduced by SHUTTLEWORTH and BAILEY.It has been found that none of these theories completely describe the experimental results for all particle sizes except for the surfaces made from 0.2 Mikrometer large particles. It was revealed that wetting behaviour on fluorosilane modified particles with the diameter of 0.2 Mikrometer is close to the equilibrium contact angle described by WENZEL and CASSIE-BAXTER theories. It has been shown that the deviations contact angle from equilibrium state increase with increasing particle size, decreasing intrinsic contact angle, and increasing solid free energy of the particle ´shell´. This provides the experimental evidence for the theory proposed by JOHNSON and DETTRE. It was revealed that ultrahydrophobic surfaces couldn´t be observed on layers made from regularly packed core-shell particles. Design of fractal irregular surfaces is an appropriate way for preparation of ultrahydrophobic self-cleaning surfaces. It was demonstrated that fluorination is not an obligatory factor for design of water repellent coatings. The obtained results are of essential interest for industrial application.
28

Nitridonickelates: Preparation, Structure and Properties

Mehta, Akash 07 October 2005 (has links) (PDF)
Low valent nickel (less than +1) complexes are rare in nature, however they are regularly encountered in nitridonickelate chemistry. Ternary alkaline earth nitridonickelates exhibit a variety of interesting crystal structures with respect to their covalently bonded nitridonickelate anionic framework. The coordination geometry of low valent nickel in these compounds presents a unique structural feature with nickel being in linear coordination by nitrogen atoms. The nitridonickelate frameworks of compounds investigated in this work are: Ba2[Ni3N2]: The first ternary alkaline earth nitridonickelates with 2D Ni-N anionic network. The formal oxidation state of Ni is +0.67. Ba2(Ba6N)[NiN]6: The structure is made of o1D helical Ni-N anionic chains. Also, the structural stability of this compound´s structure type was found to occur over a wide range of substitution of Ba by Ca and Sr; a max. of 70 percent Ba could be successfully replaced by Sr and Ca atoms retaining the same structure type. The formal oxidation state of Ni is +0.83. Ba[NiN] and the solid solution series Ba[CuxNi1-xN]: The structure is made of 1D zig-zag Ni-N chains. The solid-solution series is isostructural to Ba[NiN] at lower content of Cu while, at higher content it resembles Ba[CoN] structure type, however at very high Cu content it again transforms to Ba[NiN] structure type. The formal oxidation state of Ni is +1.0. Sr2[Ni(CN)N]: The structure consists of N-Ni-(CN) dumbbells. The compound is the first example of cyano-nitridonickelate. The formal oxidation state of Ni is 0. The handling of the ternary alkaline earth nitridonickelates in specific and also of the other nitridometalates in general suffers greatly due to their being air and moisture sensitive. This requires synthetic methods suitable for air and moisture sensitive samples and also the respective instrumental setup for the measurement of their physical properties under inert atmosphere. Up to now no comprehensive investigation of the physical properties of the ternary alkaline earth nitridonickelates has been made. In this work an emphasis was given to systematically investigate the physical properties of the ternary alkaline earth nitridonickelates and to understand their structure specific physical properties. The common features of the investigated ternary alkaline earth nitridonickelates are: 1. the low valency of nickel. 2. the linear coordination of Ni and octahedral coordination of N. During this investigation the low valent character of nickel was experimentally confirmed with the help of X-ray absorption spectroscopy and the interpretation of magnetic susceptibility data where the magnetic moments of the nickel atoms were always consistent with that of a low valent nickel species. The results obtained from the magnetic measurements and electrical conductivity shows that the alkaline earth nitridonickelates order antiferromagnetically at low temperatures and show temperature dependent metallic conductivity whereas the cyano-nitridonickelate Sr2[Ni(CN)N] does not order at low temperature, is paramagnetic, and exhibits semiconducting behaviour. This investigation has provided a better understanding of ternary alkaline earth nitridonickelates with respect to the different structure they exhibit and their associated physical properties. This work motivates to extend the investigations of the physical properties of other nitridometalates. These also exhibit different crystal structures with respect to their nitridometalate anionic framework and thus, structure specific physical properties are also to be expected.
29

A Curved Graphene Nanoribbon with Multi-Edge Structure and High Intrinsic Charge Carrier Mobility

Niu, Wenhui, Ma, Ji, Soltani, Paniz, Zheng, Wenhao, Liu, Fupin, Popov, Alexey A., Weigand, Jan J., Komber, Hartmut, Poliani, Emanuele, Casiraghi, Cinzia, Droste, Jörn, Hansen, Michael Ryan, Osella, Silvio, Beljonne, David, Bonn, Mischa, Wang, Hai I., Feng, Xinliang, Liu, Junzhi, Mai, Yiyong 28 October 2021 (has links)
Structurally well-defined graphene nanoribbons (GNRs) have emerged as highly promising materials for the next-generation nanoelectronics. The electronic properties of GNRs critically depend on their edge topologies. Here, we demonstrate the efficient synthesis of a curved GNR (cGNR) with a combined cove, zigzag, and armchair edge structure, through bottom-up synthesis. The curvature of the cGNR is elucidated by the corresponding model compounds tetrabenzo[a,cd,j,lm]perylene (1) and diphenanthrene-fused tetrabenzo[a,cd,j,lm]perylene (2), the structures of which are unambiguously confirmed by the X-ray single-crystal analysis. The resultant multi-edged cGNR exhibits a well-resolved absorption at the near-infrared (NIR) region with a maximum peak at 850 nm, corresponding to a narrow optical energy gap of ∼1.22 eV. Employing THz spectroscopy, we disclose a long scattering time of ∼60 fs, corresponding to a record intrinsic charge carrier mobility of ∼600 cm2 V–1 s–1 for photogenerated charge carriers in cGNR.
30

Two-Dimensional Carbon-Rich Conjugated Frameworks for Electrochemical Energy Applications

Yu, Minghao, Dong, Renhao, Feng, Xinliang 20 December 2021 (has links)
Following a 15-year-long investigation on graphene, two-dimensional (2D) carbon-rich conjugated frameworks (CCFs) have attracted growing research interest as a new generation of multifunctional materials. Typical 2D CCFs include 2D π-conjugated polymers (also classified as 2D π-conjugated covalent organic frameworks) and 2D π-conjugated metal–organic frameworks, which are characterized by layer-stacked periodic frameworks with high in-plane π-conjugation. These unique structures endow 2D CCFs with regular porosities, large specific surface areas, and superior chemical stability. In addition, 2D CCFs exhibit certain notable properties (e.g., excellent electronic conductivity, designable topologies, and defined catalytic/redox-active sites), which have motivated increasing efforts to explore 2D CCFs for electrochemical energy applications. In this Perspective, the structural features and synthetic principles of 2D CCFs are briefly introduced. Moreover, we discuss recent achievements in 2D CCFs designed for various electrochemical energy conversion (electrocatalysis) and storage (supercapacitors and batteries) applications. Particular emphasis is placed on analyzing the precise structural regulation of 2D CCFs. Finally, we provide an outlook about the future development of synthetic 2D CCFs for electrochemical applications, which concerns novel monomer design, chemical methodology/strategy establishment, and a roadmap toward practical applications.

Page generated in 0.0446 seconds