• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 7
  • 5
  • 2
  • 1
  • Tagged with
  • 46
  • 46
  • 46
  • 31
  • 16
  • 14
  • 14
  • 14
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

X-ray Radiation Enabled Cancer Detection And Treatment With Nanoparticles

Hossain, Mainul 01 January 2012 (has links)
Despite significant improvements in medical sciences over the last decade, cancer still continues to be a major cause of death in humans throughout the world. Parallel to the efforts of understanding the intricacies of cancer biology, researchers are continuously striving to develop effective cancer detection and treatment strategies. Use of nanotechnology in the modern era opens up a wide range of possibilities for diagnostics, therapies and preventive measures for cancer management. Although, existing strategies of cancer detection and treatment, using nanoparticles, have been proven successful in case of cancer imaging and targeted drug deliveries, they are often limited by poor sensitivity, lack of specificity, complex sample preparation efforts and inherent toxicities associated with the nanoparticles, especially in case of in-vivo applications. Moreover, the detection of cancer is not necessarily integrated with treatment. X-rays have long been used in radiation therapy to kill cancer cells and also for imaging tumors inside the body using nanoparticles as contrast agents. However, X-rays, in combination with nanoparticles, can also be used for cancer diagnosis by detecting cancer biomarkers and circulating tumor cells. Moreover, the use of nanoparticles can also enhance the efficacy of X-ray radiation therapy for cancer treatment. This dissertation describes a novel in vitro technique for cancer detection and treatment using X-ray radiation and nanoparticles. Surfaces of synthesized metallic nanoparticles have been modified with appropriate ligands to specifically target cancer cells and biomarkers in vitro. Characteristic X-ray fluorescence signals from the X-ray irradiated nanoparticles are then used for detecting the presence of cancer. The method enables simultaneous detection of multiple iv cancer biomarkers allowing accurate diagnosis and early detection of cancer. Circulating tumor cells, which are the primary indicators of cancer metastasis, have also been detected where the use of magnetic nanoparticles allows enrichment of rare cancer cells prior to detection. The approach is unique in that it integrates cancer detection and treatment under one platform, since, X-rays have been shown to effectively kill cancer cells through radiation induced DNA damage. Due to high penetrating power of X-rays, the method has potential applications for in vivo detection and treatment of deeply buried cancers in humans. The effect of nanoparticle toxicity on multiple cell types has been investigated using conventional cytotoxicity assays for both unmodified nanoparticles as well as nanoparticles modified with a variety of surface coatings. Appropriate surface modifications have significantly reduced inherent toxicity of nanoparticles, providing possibilities for future clinical applications. To investigate cellular damages caused by X-ray radiation, an on-chip biodosimeter has been fabricated based on three dimensional microtissues which allows direct monitoring of responses to X-ray exposure for multiple mammalian cell types. Damage to tumor cells caused by X-rays is known to be significantly higher in presence of nanoparticles which act as radiosensitizers and enhance localized radiation doses. An analytical approach is used to investigate the various parameters that affect the radiosensitizing properties of the nanoparticles. The results can be used to increase the efficacy of nanoparticle aided X-ray radiation therapy for cancer treatment by appropriate choice of X-ray beam energy, nanoparticle size, material composition and location of nanoparticle with respect to the tumor cell nucleus.
22

A Multiparameter Approach to Separation and Clonal Analysis of Mammalian Cells

Amaya, Peter 25 August 2017 (has links)
No description available.
23

Biomarqueurs cellulaires circulants dans les cancers avancés / Circulating cells biomarkers in advanced cancers

Massard, Christophe 04 December 2013 (has links)
Les biomarqueurs sanguins peuvent être utilisés pour définir le pronostic des patients ou permettre de déterminer les altérations moléculaires des cancers, et peut-être pouvoir guider les traitements de thérapies ciblées.Les cellules tumorales circulantes sont le reflet de la cascade métastatique et de la progression tumorale. La détection et la caractérisation des CTC est un domaine clé de la recherche dans le cancer. Cependant, il n’existe pas de méthode standard pour la détection des CTC, et le premier objectif de notre étude a été de comparer deux systèmes de détection des CTC basé sur l’expression de l’antigène EpCAM (CellSearch), ou la taille des cellules (ISET). Nos résultats montrent qu’il existe une bonne corrélation pour la détection des CTC dans les cancers du sein ou de la prostate, mais pas dans les cancers bronchiques. Ces résultats suggèrent qu’il est nécessaire de développer d’autres techniques de détection des CTC pour l’énumération et la caractérisation pour permettre une médecine de précision.A ce jour il n’existe aucun marqueur validé pour prédire l’efficacité des antiangiogéniques. Les CEC et CEP sont des marqueurs prometteurs. Dans notre étude, nous avons fait l’hypothèse que les CEC et les CEP pouvaient être pronostic de la survie des patients inclus dans les études de phases précoces. Nos résultats montrent qu’un taux élevé de CEP est associé à un mauvais pronostic, et que les CEP pourraient permettre de mieux sélectionner les patients. En conclusion, les marqueurs sanguins comme les CTC, les CEC ou les CEP peuvent être utilisés comme des facteurs pronostiques ou permettre une caractérisation moléculaire, et être une partie intégrante des programmes de médecine de précision. / Non-inasive biomarkers detected in the blood could be use for risk) stratification or molecular classification in advanced cancer patients, and could be a guide for molecular targeted therapies. Circulating tumor cells reflect the metastatic cascade and the cancer progression. The detection and molecular characterization of circulating tumor cells (CTCs) are a key area of translational cancer research. However, there is no universal method to detect CTC, and the primary objective of our study was to compare CTC detection systems based on the expression of the EpCAM antigen (CellSearch assay) or on cell size (ISET assay). Our results showed concordant results in CTC detection in breast and prosatet cancer patients, but not in lung cancer patients. These results suggest that we need to develop other CTC-detection techniques CTC for enumeration and characterization in order to to contribute to guiding specific targeted.To date, no biomarker has been validated for the prediction of efficacy of antiangiogenic agents in patients with advanced cancer. CEC and CEP counts have recently emerged as a potential candidate. In our study, we hypothesised that CEC and CEP are prognostic in patients enrolled in phase I. Our results showed that High CEP levels are associated with poor prognostics and could provide a new tool for patient selection in early anticancer drug trials.In conclusion, non invasive biomarkers such as CTC or CEC, CEP detectable in the blood could be used in the clinic as prognostic factors or surrogates for traditional tumor biopsies, and be a major component of precision medicine.
24

Role of stroma and Wound Healing in carcinoma response to ionizing radiation

Arshad, Adnan 03 July 2014 (has links) (PDF)
Wound healing and carcinogenesis are defined as complex, adaptive processes which are controlled by intricate communications between the host and the tissue microenvironment. A number of phenotypic similarities are shared by wounds and cancers in cellular signaling and gene expression. Radiotherapy is the second most effective modality of cancer treatment after surgery and can be used, either alone or in combination with chemotherapy. Recent findings suggest that radiotherapy apart from tumor cell death also rapidly and persistently modifies the tissue microenvironment. These modifications affect cell phenotype, tissue metabolism, bidirectional exchanges and signaling events between cells. The complex interactions between stromal cells and cancer cells are of immense interest and in The First Part of My Thesis, I tried to explore the crosstalk between stromal and carcinoma cells in response to radiotherapy by genetic modulation of the stroma and irradiation. We found that fibroblasts, irrespective of their RhoB status, do not modulate intrinsic radiosensitivity of TC-1 but produce diffusible factors able to modify tumor cell fate. Then we found that Wt and RhoB deficient fibroblasts stimulated TC-1 migration through distinct mechanisms respectively, TGF-β1 and MMP-mediated. We also found that co-irradiation of fibroblasts and TC-1 abrogated the pro-migratory phenotype by repression of TGF-β and MMP secretion. This result is highly relevant to the clinical situation and suggests that conversely to, the current view; irradiated stroma would not enhance carcinoma migration and could be manipulated to promote anti-tumor immune response. Secondly, our in vivo experiments, tends to confirm the in vitro data showing that irradiated tumor bed does not stimulate tumor growth and escape. Our results also challenges the view that irradiated stroma would promote migration of carcinoma cells as we show that independently from their genotype co-irradiation of fibroblasts and carcinoma cells repressed carcinoma cell migration and confirmations studies are currently performed in vivo. The Third Part of My Project, was dedicated to investigate the effect on CTC release after radiotherapy. Consistently with the results reported after surgery , the number of CTC increases in the blood stream after radiotherapy probably due to radiation-induced vascular injury induced or/and by EMT induction in tumor cells but these cells seemed to be entrapped into the cardiac cavity. The significance of these CTC to metastatic development is still under investigation but there is evidence for a metastasis-promoting effect of RT from animal studies.Thus the microenvironment can exert antagonist stimulatory or inhibitory effects on malignant cells.
25

Multimarker Gene Analysis of Circulating Tumor Cells in Pancreatic Cancer Patients: A Feasibility Study

de Albuquerque, Andreia, Kubisch, Ilja, Breier, Georg, Stamminger, Gudrun, Fersis, Nikos, Eichler, Astrid, Kaul, Sepp, Stölzel, Ulrich 12 February 2014 (has links) (PDF)
Objective: The aim of this study was to develop an immunomagnetic/real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay and assess its clinical value for the molecular detection of circulating tumor cells (CTCs) in peripheral blood of pancreatic cancer patients. Methods: The presence of CTCs was evaluated in 34 pancreatic cancer patients before systemic therapy and in 40 healthy controls, through immunomagnetic enrichment, using the antibodies BM7 and VU1D9 [targeting mucin 1 and epithelial cell adhesion molecule (EpCAM), respectively], followed by real-time RT-PCR analysis of the genes KRT19, MUC1, EPCAM, CEACAM5 and BIRC5. Results: The developed assay showed high specificity, as none of the healthy controls were found to be positive for the multimarker gene panel. CTCs were detected in 47.1% of the pancreatic cancer patients before the beginning of systemic treatment. Shorter median progression-free survival (PFS) was observed for patients who had at least one detectable tumor-associated transcript, compared with patients who were CTC negative. Median PFS time was 66.0 days [95% confidence interval (CI) 44.8–87.2] for patients with baseline CTC positivity and 138.0 days (95% CI 124.1–151.9) for CTC-negative patients (p = 0.01, log-rank test). Conclusion: Our results suggest that in addition to the current prognostic methods, CTC analysis represents a potential complementary tool for prediction of outcome in pancreatic cancer patients. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
26

Individualizace léčby pacientů s karcinomem prostaty na základě molekulární a imunocytochemické detekce cirkulujících nádorových buněk / Individualization of the treatment of prostate cancer patients based on the immunocytochemical detection of circulating tumor cells

Škereňová, Markéta January 2017 (has links)
Introduction: Together with the introduction of new therapeutic options in castration- resistant prostate cancer (CRPC), an advance in individual disease characterization is required. Since common biopsy methods are not suitable for the majority of CRPC patients, one possible solution is the liquid biopsy that is, the analysis of circulating tumor cells (CTCs) isolated from the cancer patients' blood. Methods: A method based on the immunomagnetic enrichment of CTCs and subsequent PCR detection of tumor-associated genes (AdnaTest, Qiagen) was characterized and used for the detection of CTCs in 41 CRPC patients. Each patient was screened at the time of CRPC diagnosis and after the 3rd cycle of docetaxel therapy. A panel of genes associated with therapeutic decision-making was established and validated. Quantitative PCR (qPCR) method on a BioMark platform (Fluidigm, USA) was used to determine the expression of the gene panel in the CTC-enriched and primary tumor samples and the results were analyzed. Results: CTCs were found in 85% and 45% of CRPC patients before and during the therapy, respectively. The presence of CTCs, as well as EGFR and AR PCR fragments, was associated with a decreased sPSA response and lower survival. The gene expression of the CTC- enriched and primary tumor samples differed...
27

Identification et caractérisation des cellules tumorales circulantes dans le cancer colorectal / Identification and characterization of circulating tumors cells in colorectal cancer

Grillet, Fanny 30 October 2015 (has links)
La présence de métastases est un facteur de mauvais pronostic dans les cancers solides et une meilleure compréhension de la dissémination tumorale est nécessaire afin d'améliorer la prise en charge de ces formes avancées. Les cellules tumorales circulantes (CTC) représentent un intérêt majeur dans la pathologie tumorale, d'une part sur le plan clinique en tant que marqueur prédictif et pronostique et d'autre part sur le plan de la compréhension des mécanismes impliqués dans la formation des métastases. Les CTC sont rares et hétérogènes et restent mal caractérisées, et ce, particulièrement dans le cancer colorectal. Une partie de ces cellules aurait un phénotype de cellules initiatrices de tumeur (CIT) leur permettant de former des métastases, de résister aux traitements et par conséquent d'être responsables des rechutes. Une meilleure connaissance des CTC possédant un phénotype de CIT représente donc un enjeu majeur. L'objectif de ce travail a été d'identifier et de caractériser les CTC avec un potentiel de cellules initiatrices de tumeur dans le cancer colorectal en se basant sur les propriétés fonctionnelles des CIT. Nous avons ainsi, pour la première fois, pu établir deux modèles permettant de répondre à cet objectif. D'une part des lignées de CTC avec un fort potentiel de CIT obtenues à partir d'échantillons sanguins de patients atteints de cancer colorectal, et d'autre part, nous avons mis en place un modèle murin de dissémination tumorale par xénogreffe orthotopique permettant d'isoler les CTC. / Liver or lung metastases represent a poor prognosis in colorectal cancer patients and better understanding tumor spreading became essential to improve patient care. Circulating tumor cells (CTC) is considered as a promising tool, both as prognostic marker and as tool to study mechanisms involved in metastasis development. CTCs are rare and heterogeneous and remain poorly characterized especially in colorectal cancer. It is accepted that at least some of the CTC have a tumor initiating cell (TIC) phenotype that could be responsible for metastasis, chemoresistance and consequently lead to relapse. A deep characterization of CTC became thus an urgent unmet need. The aim of this work was to identify and characterize CTC with TIC properties in colorectal cancer, on the basis of their functional properties. To reach this aim, we established for the first time and characterized CTC lines from blood sample of colorectal cancer patient, and we also developed an orthotopic xenograft mouse model in which tumoral cells are circulating in the blood.
28

Development of microfluidic device for high content analysis of circulating tumor cells / Développement d'un système microfluidique pour l'analyse haut-contenu de cellules tumorales circulantes

Tulukcuoglu Güneri, Ezgi 20 October 2016 (has links)
Le cancer est l'une des principales causes de décès dans le monde. D'après la société américaine contre le cancer; en 2015, un quart des décès aux Etats-Unis est du au cancer du poumon avant même les maladies cardiaques. Cette situation nous incite et bien d'autres scientifiques dans le monde à développer des moyens plus efficaces de traitement, le diagnostic et le dépistage de la maladie. Parce que près de 90% des décès par cancer sont dus à des métastases, de nombreuses études se sont concentrées sur le mécanisme de métastases et sur son impact clinique. Les cellules tumorales circulantes (CTC) sont les cellules s’échappent de tumeurs primaires ou métastatiques pour rejoindre le flux sanguin périphérique, ces cellules sont un élément de transition dans le processus métastatique et portent ainsi des informations cruciales sur ce mécanisme encore mal compris. Les CTCs ont déjà montré leur potentiel comme biomarqueur de pronostic de la progression de la maladie et de l'indicateur de l'efficacité du traitement en fonction l’augmentation ou de la diminution de leur nombre. Leur caractérisation moléculaire peut également donner des informations vis à vis de cibles thérapeutiques possibles et des mécanismes de progression de la maladie ou de la résistance aux médicaments. Leur comptage au cours du traitement combiné avec leur caractérisation moléculaire devrait améliorer la prise en charge des patients dans le cadre de la médecine personnalisée. Cependant CTCs sont extrêmement rares, 1 à 10 cellules / ml de sang parmi les 106 globules blancs et 109 globules rouges, leur capture à partir du sang reste donc un challenge analytique. Dans les dernières décennies, Une grande variété de techniques d'enrichissement et de capture a été mise au point et l'approche microfluidique est l'une des méthodes efficaces, flexibles et à haut débit. Au sein de notre équipe, un dispositif microfluidique (système Ephesia) puissant pour la capture et l'analyse des cellules tumorales circulantes a déjà été mis au point précédemment. Le principe de capture est basé sur l'auto-assemblage de billes magnétiques greffées par des anticorps, grâce aux quelles les cellules sont enrichies via l’interaction Ab- l'antigène de surface EpCAM que l'on trouve communément dans les cellules cancéreuses d'origine épithéliale. Ce système a déjà été validé avec des lignées cellulaires et des échantillons de patients. Cependant, le système n'a pas permis l'isolement / détection des sous-populations de CTCs ou d'effectuer une caractérisation moléculaire très poussée. Par conséquent, mon projet de thèse vise à améliorer encore les capacités du système sur les deux principaux aspects: le ciblage sous-populations de CTC et à l'étude des interactions des protéines à la surface des CTCs dans le Système Ephesia... / Metastasis is the advanced stage of cancer progression and is the cause of 90% of deaths in cancer disease. During metastatic cascade, it is suggested that the successful metastatic initiation depends on the survival of circulating tumor cells (CTCs). CTCs are the cells that shed from the primary or secondary tumor sites into the blood circulation. it is now widely recognized as potential biomarker for companion diagnostics in which high number of CTCs in blood can indicate association with poor survival or high risk of disease progression. Besides, following the number of CTCs during the course of treatment can help to adapt the selected therapy and predict the treatment efficacy. On the other hand molecular characterization can provide patient stratification and identifying the therapeutic targets. However they are extremely rare in the bloodstream, estimated between 1-10 CTC among 6×106 leukocytes, 2×108 platelets and 4×109 erythrocytes per one mL of blood which makes their isolation very challenging. A very attractive way of isolation of CTCs is to integrate microfluidics. Microfluidics offers great advantages such as low volume of reagent consumption and short analysis times with automation as well as isolation and detection analysis can be integrated resulting in highly efficient biomedical devices for diagnostics. As parallel to state of the art, a powerful microfluidic device for circulating tumor cells capture and analysis had already been developed previously in our laboratory. The principle of capture is based on self-assembly of antibody-coated (EpCAM) magnetic beads in which the cells are enriched by EpCAM surface antigen which is found commonly in epithelial origin cancer cells. This system was already validated with cell lines and patients samples. However, the system did not allow isolation/detection of subpopulations of CTCs or performing high content molecular characterization. Therefore, my PhD project aimed at further improving the capabilities of the system on the main two aspects: targeting subpopulations of CTC and studying of protein interactions of CTCs in Ephesia System...
29

Nanoparticules à base de poly(L-glutamate de γ-benzyle) pour l’interception et la destruction des cellules tumorales circulantes dans la circulation sanguine / Poly(benzyle glutamate)-based nanoparticles for intercepting and destroying circulating tumor cells into the bloodstream

Taylor castillo, An Young 11 September 2018 (has links)
En dépit de progrès considérables, le cancer reste l'une des principales causes de morbidité et de mortalité dans le monde. Actuellement, 90% des décès liés au cancer sont causés par la propagation de cellules cancéreuses vers des organes distants. Une fois implantées et disséminées, les métastases sont beaucoup plus difficiles à détruire par les moyens de la chimiothérapie.A la suite d’un processus d’intravasation, certaines cellules tumorales s’échappent de la tumeur primaire et empruntent les systèmes circulatoires avant d’être ensuite extravasées, puis distribuées et finalement disséminées dans divers organes. Ainsi, dans l’environnement circulatoire, ces cellules tumorales circulantes (CTCs) se trouvent particulièrement accessibles aux agents thérapeutiques. Dans ce cadre, nous avons imaginé d’utiliser des nanoparticules à architecture contrôlée, afin d’intercepter de manière sélective ces cellules dans l’environnement sanguin.Dans cet objectif, nous avons synthétisé par ouverture de cycle de la lactone correspondante des copolymères amphiphiles di- et tri-blocs du poly(glutamate de benzyle). Leur auto-assemblage a permis d'obtenir des nanoparticules amphiphiles de taille inférieure à 100 nm et de potentiel ζ négatif, dont la géométrie contrôlable va de la forme sphérique (rapport d'aspect 1.3) à la forme ellipsoïdale (oblats) (rapport d'aspect 2,6) et qui présentant en surface des chaînes de PEG sous des conformations et des densités de surface contrôlées.En raison de leur capacité de circuler dans le compartiment sanguin, ces nanoparticules ont une probabilité d’interaction optimale avec les CTCs.L’impact de la modification de leur architecture a été établi en étudiant les capacités d’interactions des différentes nanoparticules préparées, d’une part avec les protéines plasmatiques et d’autre part, avec les différents types cellulaires rencontrés dans le compartiment sanguin.Les résultats les plus marquants montrent que l’élongation des nanoparticules (oblats) et l’anisotropie de leur surface, caractérisée par leur balance hydrophile/lipophile, gouvernent profondément leurs interactions. De manière fort intéressante, il apparaît que l’élongation des particules dont la surface est uniformément hydrophile diminue l’intensité de leur capture par les différents types cellulaires modèles étudiés (HUVECs modèle de cellules endothéliales), cellules RAW 276.7 (modèle de macrophages) et cellules PC3 (cancer de la prostate) et B16 (mélanome). En revanche, lorsque ces nanoparticules présentent une anisotropie de surface, leur capture par ces différents types cellulaires est augmentée avec l’élongation des particules (facteur d’élongation de 2,1).Dans un dernier volet expérimental, ces nanoparticules ont été modifiées par greffage de la protéine MART1 à leur surface. Ces immuno-nanoparticules ont montré une certaine capacité de reconnaissance des cellules B16 (modèle du mélanome). Leur efficacité après injection intraveineuse devra toutefois être précisée in vivo. / Despite the considerable progress, cancer remains one of the leading causes of morbidity and mortality worldwide. Currently, 90% of cancer deaths are caused by the spread of cancer cells to distant organs. Once implanted and disseminated, metastases are much more difficult to destroy by means of chemotherapy.Following a process of intravasation, some tumor cells escape from the primary tumor and migrate through the circulatory systems before being extravasated, then distributed and finally disseminated in various organs. Thus, in the circulatory environment, these circulating tumor cells (CTCs) are particularly accessible to therapeutic agents. In this context, we have imagined the use of nanoparticles with controlled architecture, in order to selectively intercept these cells in the blood environment.For this purpose, we have synthesized by ring opening of the corresponding lactone, amphiphilic di- and tri-block copolymers of poly (benzyl glutamate). Their self-assembly made it possible to obtain amphiphilic nanoparticles smaller than 100 nm in size and with a negative ζ potential, whose controllable geometry ranges from spherical (aspect ratio 1.3) to ellipsoidal (oblates) (aspect ratio 2, 6) and having PEG chains on the surface under controlled surface conformations and densities.Due to their ability to circulate in the blood compartment, these nanoparticles have an optimal probability of interaction with CTCs.The modification impact of their architecture has been established by studying the interaction capacities of the different nanoparticles prepared. On the one hand with the plasma proteins and on the other hand, with the different cell types encountered in the blood compartment.The most striking results show that the elongation of the nanoparticles (oblates) and the anisotropy of their surface, characterized by their hydrophilic / lipophilic balance, strongly govern their interactions. Interestingly, it appears that the elongation of particles whose surface is uniformly hydrophilic decreases the intensity of their capture by the different types of cell models studied (HUVEC model endothelial cells), RAW 276.7 cells (macrophage model) and cells PC3 (prostate cancer) and B16 (melanoma). Although, when these nanoparticles exhibit surface anisotropy, their capture by these different cell types is increased with the elongation of the particles (elongation factor of 2.1).In a final experimental part, these nanoparticles were modified by grafting the MART1 protein on their surface. These immuno-nanoparticles showed a certain recognition capacity of B16 cells (melanoma model). However, their efficacy after intravenous injection should be specified in vivo.
30

The Lymphatic System in Breast Cancer Metastasis

Odalys Torres Luquis (11200086) 29 July 2021 (has links)
The leading cause of breast cancer-associated death is metastasis. During metastasis, tumor cells metastasize from primary tumors to distant organs via the circulatory and lymphatic systems. However, in 80% of solid tumors, metastasis via the lymphatic system precedes metastasis via the vascular system. There is a lot of information about metastasis through the circulatory system. However, not much information is available about the tumor cell dissemination through the lymphatic system or the lymphatic microenvironment that aids in this process in breast cancer metastasis. In addition, the molecular properties of tumor cells as they exit the primary tumor into the afferent lymphatics en route to the sentinel lymph nodes (SLNs) are not yet known.<br><div><br></div><div>This project aims to determine why and how tumor cells metastasize to the lymphatic system. The proposal is based on the hypothesis that active migration is needed for tumor cells to spread via the lymphatic vessels. Thus, finding and understanding the molecules that contribute to this can be a breakthrough for breast cancer metastasis therapy.<br></div><div><br></div><div>The goals of this thesis are to 1) Examine the molecular, genetic, and proteomic characteristics of circulatory tumor cells and compare these to the primary tumor and lung metastasis, 2) Examine the role of Toll-like receptors in tumor cell migration to the lymph node, and 3) Identify the difference in protein expression among two different types of breast cancer (Triple-Negative and Luminal A) and understand their aggressive biology.<br></div>

Page generated in 0.1447 seconds