• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 90
  • 55
  • 22
  • 22
  • 18
  • 18
  • 18
  • 18
  • 18
  • 17
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 269
  • 269
  • 47
  • 46
  • 43
  • 39
  • 38
  • 37
  • 32
  • 27
  • 26
  • 25
  • 24
  • 20
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

The effects of gypsy moth defoliation and climatic conditions on radial growth of deciduous trees /

Naidoo, Robin. January 1997 (has links)
No description available.
232

Growth response of Pinus resinosa and Picea abies to past and future climatic variations

Djalilvand, Hamid. January 1996 (has links)
No description available.
233

Bridging environmental physiology and community ecology : temperature effects at the community level

Iles, Alison C. 20 November 2014 (has links)
Most climate change predictions focus on the response of individual species to changing local conditions and ignore species interactions, largely due to the lack of a sound theoretical foundation for how interactions are expected to change with climate and how to incorporate them into climate change models. Much of the variability in species interaction strengths may be governed by fundamental constraints on physiological rates, possibly providing a framework for including species interactions into climate change models. Metabolic rates, ingestion rates and many other physiological rates are relatively predictable from body size and body temperature due to constraints imposed by the physical and chemical laws that govern fluid dynamics and the kinetics of biochemical reaction times. My dissertation assesses the usefulness of this framework by exploring the community-level consequences of physiological constraints. In Chapter 2, I incorporated temperature and body size scaling into the biological rate parameters of a series of realistically structured trophic network models. The relative magnitude of the temperature scaling parameters affecting consumer energetic costs (metabolic rates) and energetic gains (ingestion rates) determined how consumer energetic efficiency changed with temperature. I systematically changed consumer energetic efficiency and examined the sensitivity of network stability and species persistence to various temperatures. I found that a species' probability of extinction depended primarily on the effects of organismal physiology (body size and energetic efficiency with respect to temperature) and secondarily on the effects of local food web structure (trophic level and consumer generality). This suggests that physiology is highly influential on the structure and dynamics of ecological communities. If consumer energetic efficiency declined as temperature increased, that is, species did best at lower temperatures, then the simulated networks had greater stability at lower temperatures. The opposite scenario resulted in greater stability at higher temperatures. Thus, much of the community-level response depends on what species energetic efficiencies at the organismal-level really are, which formed the research question for Chapter 3: How does consumer energetic efficiency change with temperature? Existing evidence is scarce but suggestive of decreasing consumer energetic efficiency with increasing temperature. I tested this hypothesis on seven rocky intertidal invertebrate species by measuring the relative temperature scaling of their metabolic and ingestion rates as well as consumer interaction strength under lab conditions. Energetic efficiencies of these rocky intertidal invertebrates declined and species interaction strengths tended to increase with temperature. Thus, in the rocky intertidal, the mechanistic effect of temperature would be to lower community stability at higher temperatures. Chapter 4 tests if the mechanistic effects of temperature on ingestion rates and species interaction strengths seen in the lab are apparent under field conditions. Bruce Menge and I related bio-mimetic estimates of body temperatures to estimates of per capita mussel ingestion rates and species interaction strengths by the ochre sea star Pisaster ochraceus, a keystone predator of the rocky intertidal. We found a strong, positive effect of body temperature on both per capita ingestion rates and interaction strengths. However, the effects of season and the unique way in which P. ochraceus regulates body temperatures were also apparent, leaving room for adaptation and acclimation to partially compensate for the mechanistic constraint of body temperature. Community structure of the rocky intertidal is associated with environmental forcing due to upwelling, which delivers cold, nutrient rich water to the nearshore environment. As upwelling is driven by large-scale atmospheric pressure gradients, climate change has the potential to affect a wide range of significant ecological processes through changes in water temperature. In Chapter 5, my coauthors and I identified long-term trends in the phenology of upwelling events that are consistent with climate change predictions: upwelling events are becoming stronger and longer. As expected, longer upwelling events were related to lower average water temperatures in the rocky intertidal. Furthermore, recruitment rates of barnacles and mussels were associated with the phenology of upwelling events. Thus climate change is altering the mode and the tempo of environmental forcing in nearshore ecosystems, with ramifications for community structure and function. Ongoing, long-term changes in environmental forcing in rocky intertidal ecosystems provide an opportunity to understand how temperature shapes community structure and the ramifications of climate change. My dissertation research demonstrates that the effect of temperature on organismal performance is an important force structuring ecological communities and has potential as a tractable framework for predicting the community level effects of climate change. / Graduation date: 2013 / Access restricted to the OSU Community, at author's request, from Nov. 20, 2012 - Nov. 20, 2014
234

Dietary responses of marine predators to variable oceanographic conditions in the Northern California Current

Gladics, Amanda J. 16 April 2012 (has links)
Variable ocean conditions can greatly impact lower trophic level prey assemblages in marine ecosystems, with effects propagating up to higher trophic levels. Our goal was to better understand how varying ocean conditions influence diets and niche overlap among a suite of low- to mid trophic level predators. We studied the diets of common murres (Uria aalge) over 10 contrasting years between 1998 and 2011, a period in which the Northern California Current experienced dramatic interannual variability in ocean conditions. Likewise, murre diets off Oregon varied considerably. Interannual variation in murre chick diets appears to be influenced by environmental drivers occurring before and during the breeding season, at both basin and local spatial scales. While clupeids were an important diet component throughout the study period, in some years murre diets were dominated by Pacific sand lance (Ammodytes hexapterus) and other years by osmerids (likely Allosmerus elongatus and Hypomesus pretiosus). Years in which the Pacific Decadal Oscillation and local sea surface temperatures were above average during summer months also showed elevated levels of clupeids in murre diets, while years with higher winter ichthyoplankton biomass and summer northern copepod biomass anomalies had fewer clupeids and more sand lance and smelts. Years with higher Northern Oscillation Index values during summer months also showed more smelts in the murre diets. Nesting phenology and reproductive success were correlated with diet as well, reflecting demographic consequences of environmental variability mediated through bottom-up food web dynamics. To examine niche overlap between murres and other marine predators we employed collaborative fisheries research with synoptic observations of a major seabird colony to determine the diets of four predator species on the central Oregon coast during two years of contrasting El Niño (2010) vs. La Niña (2011) conditions. The greatest degree of dietary overlap was observed between Chinook salmon (Oncorhynchus tshawytscha) and common murres, with both smelts (Osmeridae) and clupeids (primarily Clupea pallasii) observed as the dominant prey types. Diets differed between El Niño and La Niña conditions for two predators, murres and black rockfish (Sebastes melanops). During La Niña, smelts decreased, while sand lance increased in common murre diets. Black rockfish had fewer larval Dungeness crabs (Cancer magister) and a greater proportion of crab species associated with the later spring transition. Chinook salmon and Pacific halibut (Hippoglossus stenolepis) diets were similar during El Niño and La Niña conditions. These findings underscore that the diets of common murres during chick rearing reflect local- and basin-scale biophysical processes in the Northern California Current, and are valuable for understanding the response of upper trophic level organisms to changing oceanographic conditions. Additionally, using multiple predators across several diverse taxa to track changes in prey communities provided a way to detect seemingly subtle changes in prey communities and contributes to a more comprehensive understanding of food web dynamics and ecosystem indicators. / Graduation date: 2012
235

Defining the Terroir of the Columbia Gorge Wine Region, Oregon and Washington, USA Using Geographic Information Systems (GIS)

Whitney, Hilary 30 June 2015 (has links)
The Columbia Gorge Wine Region (CGWR) is an emerging wine producing area that extends for about 100km along the Columbia River in Oregon and Washington State in which the number of vineyards, wineries and physical terroir conditions have yet to be defined. To better understand the physical factors affecting Oregon and Washington wine, this project analyzes climate, topography, geology and soil at vineyards in the CGWR. This was accomplished using Geographic Information Systems, existing earth science databases and field work. The region, which includes the Columbia Gorge American Viticulture Area (AVA) and the southwest portion of the Columbia Valley AVA, is home to 82 vineyards, 513 hectares (1268 acres), 37 wineries and 41 different varieties of Vitus Vinifera. Vineyards range in elevation from 29 to 548 meters (95 to 1799 feet). Vintner responses to a grower's survey suggest that twenty-eight grape varieties account for 98% of the estimated grape variety acreage, with Pinot Noir being the most widely planted grape variety in both AVAs. The boundaries of each climatic regime were mapped based on 1981-2010 PRISM data, the Winkler Index (Amerine and Winkler, 1944) updated by Jones et al. (2010) and climatic maturity groupings designed for Oregon (Jones et al., 2002; Jones et al., 2010). Three Winkler climate regimes are represented within the CGWR, including regions Ia, Ib, and II from the Winkler Index (Jones et al., 2010). The diversity in regimes allows for a diversity of grape varieties to be planted within the regime. The average growing season temperatures and growing degree days, respectively, from 1981-2010 calculated for vineyards ranges from 13.7°C (55.7°F) to 17.7°C (63.9°F) and 871 for °C (1567 for °F) to 1664 for °C (2994 for °F) respectively. 58% of the vineyards are characterized in an intermediate climatic regime, 29% are within a cool climatic regime, 9% are within a warm climatic regime and 4% are on the boundaries between a cool, intermediate or warm regime. 80% of the vineyards are within Regions Ia and Ib characterized by the Winkler Index, and 20% are within Region II. The growing degrees days calculated for the CGWR are similar those measured in the Willamette Valley, Oregon, Burgundy, France, Umpqua Valley AVA in Oregon and Bordeaux wine region in France. All of the soils currently being used to grow grapes are well-drained and within a xeric moisture regime, which are favorable conditions for viticulture. 30 soil series are represented among the vineyard sites, with the Chemawa Series (Underwood Mountain) and Walla Walla Series (eastern portions) being the dominant soil series used to grow grapes. Majority of the soils contain a silt loam texture. Soil Survey data for Oregon and Washington suggest that loess is extensive in the CGWR, with 46.5% of the total vineyard acreage planted on soils formed in loess. The Missoula Floods also greatly influenced the texture and age of the soil in this region, with skeletal textures being close to the Columbia River. Other common geological deposits at vineyards in the CGWR include, Quaternary Basalt (19.6%), Missoula Flood deposits (9.1%), The Dalles Formation (8.0%), Columbia River Basalt Group (7.5%), Pliocene Basalt (3.0%), Quaternary Surficial deposits (3.0%), lahars (2.3%) and Quaternary Basaltic Andesite and Andesite (0.9%). Common geological deposits, soil series, and climate conditions at vineyard sites vary spatially in the region, and therefore it is suggested that future work focus on separating the region into separate climatic sub-AVA regimes to better reflect the diversity in terroir conditions.
236

Climate warming effects on the life cycle of the parasite Ceratomyxa shasta in salmon of the Pacific Northwest

Chiaramonte, Luciano V. 08 March 2013 (has links)
Aquatic ecosystems continue to be increasingly affected by climate warming. For salmonids in the Pacific Northwest of North America, increasing temperatures pose tighter thermal constraints on their habitat use as well as aspects of their individual performance, such as disease resistance. This thesis examines the effect of temperature on the phenology of the Ceratomyxa shasta life cycle, the effect of thermal refugia on disease risk in juvenile salmonids in the Klamath River, CA, and the spatial and temporal distribution of C. shasta in the Willamette River, OR. We developed a biological model that predicts an acceleration of the C. shasta life cycle development due to climate shifts in the Klamath River, resulting in more generations per year and earlier seasonal parasite occurrence. We showed that in early summer the Beaver Creek-Klamath River confluence provides juvenile Chinook and coho salmon an area of lower parasite doses and cooler temperatures than the main stem, thus lessening disease risk. By accelerating the development of C. shasta in its hosts, increasing temperatures will result in earlier parasite transmission to juvenile salmonids and a longer season of infectivity. These fish may find disease refuge at cold tributary inflows to the main stem of the Klamath River in early summer, further adding to the benefit of these important thermal habitats. To determine if similar disease patterns occur in other rivers with the parasite, we described spatial and temporal occurrence of C. shasta in the Willamette River. By collecting weekly water sampling at four sites over 28 months we characterize seasonal and annual differences of parasite abundance, which varies with weekly temperature. We also collected samples along the length of the main stem and its tributaries and identified spatial differences in C. shasta spore densities. Identification of spatial and temporal variation of C. shasta in the Willamette River provides a foundation for understanding future patterns of disease occurrence in this river where conservation of anadromous fisheries is also of concern. This thesis identifies likely responses of C. shasta to climate warming in the Klamath River, with useful application to other rivers in the Pacific Northwest. / Graduation date: 2013
237

Climate change awareness: a case study of small scale maize farmers in Mpumalanga province, South Africa

Oduniyi, Oluwaseun Samuel 07 1900 (has links)
This study was conducted in the Nkangala district, in the province of Mpumalanga in South Africa. This province remains the largest forestry production region in South Africa. The majority of people living in Mpumalanga are farmers and they have contributed immensely to promote food security. The objective of the study was to determine the level of climate change awareness among small scale maize producers in Mpumalanga province. Random sampling techniques was used to select two hundred and fifty one (251) farmers to be interviewed. A pre-tested questionnaire was administered to maize farmers, focusing on matters relating to climate change awareness in maize production. Data was captured and analysed using software package for social science (SPSS version 20 of 2012). Descriptive statistics were applied to analyse and describe the data. Logistic regression analysis followed to demonstrate the significance of the independent variables on climate change awareness. The results of the analysis indicated that the information received and the size of the farm had an impact on climate change awareness in the area of study. It was therefore recommended that the majority of farmers in Mpumalanga needed to be made aware of climate change in order to assist them to build the adaptive capacity, increase resilience and reduce vulnerability. Information on climate change awareness should be disseminated well to ensure that it will attract the attention of the farmers / Agriculture and  Animal Health / M.Sc. (Agriculture)
238

The effects of weather variability on growth potential of Afrikaner cattle in a semi-arid region in Zimbabwe

Chipfupa, Lukas 25 July 2013 (has links)
Only part of the abstract could be included due to the rest having renderable text / The abiotic environment plays an important role in cattle production. Key abiotic elements evaluated in this study are rainfall and temperature. This study was carried out to assess the effect and contribution of rainfall and temperature, amid other factors, on pre- and post-weaning growth traits of Afrikaner cattle at Matopos Research Institute from 1958 to 1997. Historical data generated from a genotype x environment interaction study at Matopos Research Institute was used to identify factors associated with the average daily weight gain of calves of Afrikaner cattle breed. A total of 10 700 records were retrieved comprising of birth weight (BW), 90 day weight, 205 day weight and early post-weaning weight as well as additional corresponding rainfall and temperature data from 1958 to 1997. The rainfall and temperature data was computed asrainfall and temperature variability. The data was corrected for heteroscedasticity using the generalized least squares approach (GLS) before running an ordinary least square regression (OLS) analysis to determine the association between growth rate and potential explanatory factors for average daily weight gain, pre-weaning weight gain and early post-weaning weight gain. / Agriculture and  Animal Health / M. Sc. (Agriculture)
239

Impact of climate change on fresh water resources of Elliot town in the Eastern Cape

Ndlela, Bekithemba 11 1900 (has links)
Climate change and variability have great impact on the hydrological cycle and consequently on the availability of water resources. Variations in temperature and precipitation trends that are occurring are a consequent of the increase in the concentrations of greenhouse gases, which are subsequently affecting the hydrological cycle. This in turn affects water quantity and quality, which is essential for agriculture, domestic and industrial uses. This study, done in Elliot Town and the surrounding areas of Sakhisizwe Municipality in the Eastern Cape Province of South Africa, evaluates how climate change and variability is affecting water availability and its quality in the town. The impact climate change and variability on agricultural production is also assessed. Remote Sensing, Geographic Information Systems (GIS), databases and some statistical packages have been used to collect, analyse and create spatial maps used to derive concrete conclusions. The methods used aided in spatially analysing the changes in temperature and rainfall along the years and make a comparative analysis. The study has shown that the spatial changes in the amount, intensity and frequency of rainfall affects the magnitude and frequency of stream flows; consequently, increasing the intensity of floods and droughts that have been recurring in the last few decades. The municipality is more affected by climate variability than change, and the resultant extreme climate events are affecting the water resources resulting in domestic water cuts, poor water quality and low agriculture productivity. This study recommends the importance of an awareness campaigns on climate change and variability and their effect directed towards the community, especially on novel water harvesting technologies. The study also highlights the importance of a robust early warning system to prepare the community in case of a climate shock, which is an area that needs further research. / Environmental Sciences
240

Die invloed van spesifieke grond en klimaats parameters op wingerdprestasie, wynkwaliteit en -karakter

Roux, F. A. 03 1900 (has links)
Thesis (MScAgric (Soil Science))--University of Stellenbosch, 2005. / This thesis forms part of a research program that is investigated by ARC Infruitec- Nietvoorbij and the University of Stellenbosch. The aim of this program is to quantify the effect of soil and climate on wine quality and character as a basis for scientific demarcation of production regions. Natural factors are first quantified and characterised so that relative homogeneous natural terroir units (NTU) can be identified. Thereafter wines made from these different localities are assessed for similarities which permit grouping of localities into viticultural terroirs. The present study involved seven research plots in the Robertson district, making use of initial measurements by ARC Infruitec-Nietvoorbij in the 2000/01 and 2001/02 seasons together with more intensive measurements in the 2002/03 and 2003/04. The seven plots are located in two wards, Le Chasseur and Vinkrivier. Sauvignon blanc plots were marked at two localities, each with two sub-plots occurring in one block. Three Cabernet Sauvignon plots were marked out. Two plots occurred in one block in Le Chasseur and one plot in Vinkrivier. Plots within the same block were located on different soil types so that the effect of soil type on wine quality and character could be monitored. Morphological examination of soil profiles at each plot was carried out together with physical and chemical analysis of samples taken at 30cm depth intervals. Soil water content was measured at regular intervals to assess soil water tension. Vineyard performance was assessed in terms of phenology, root system studies, leafwaterpotential measurements, canopy quality assessment, leaf analysis, shoot growth, and data relating to ripening, harvest and pruning. Wines were made from each plot by ARC Infruitec- Nietvoorbij and evaluated by a tasting panel after six months and then again after eighteen months. Meteorological data were collected in each ward.

Page generated in 0.1038 seconds