Spelling suggestions: "subject:"avalancheproblem"" "subject:"onlineproblem""
1 |
Unterraum-CG-Techniken zur Bearbeitung von KontaktproblemenUnger, Roman 28 February 2007 (has links) (PDF)
Der Gegenstand dieser Arbeit ist die Untersuchung spezieller Lösungsmethoden
zum Problem des Kontaktes eines elastischen Körpers mit einem festen Hindernis
sowie des Kontaktes zweier elastischer Körper miteinander.
Grundlage der Betrachtungen ist dabei ein Lösungsverfahren,
das auf Unterraum-CG-Techniken beruht.
Die zu Grunde liegende partielle Differentialgleichung zur Modellierung
der Verformung eines elastischen Körpers ist die Lame-Gleichung.
Aufbauend auf dieser Gleichung wird das Problem des Kontaktes in
einer neuen Formulierung, die auch große Verformungen zuläßt, betrachtet.
Um diese Probleme mit Hilfe der Finiten-Elemente-Methode numerisch lösen zu können,
erfolgt die Betrachtung der üblichen Variationsformulierung mit Hilfe
von Variationsungleichungen sowie die Angabe einer alternativen Formulierung,
die auf einer Variationsgleichung beruht.
Zur Konstruktion eines effektiven Lösungsalgorithmus werden die Problematiken der a-posteriori
Fehlerschätzung, Voraussetzungen an Vernetzungen sowie moderner Lösungsmethoden
zum Auflösen des Finiten-Elemente-Gleichungssystems betrachtet.
Um die aus dem Kontaktproblem resultierenden Restriktionen zu erfüllen, wird die Klasse der
Unterraum-CG-Verfahren einführend betrachtet und es wird die Anpassung
dieser Verfahren auf die betrachteten Probleme vorgestellt.
Die für derartige Lösungsmethoden verwendeten Projektoren werden formuliert und es werden verschiedene
Formulierungen dieser Projektoren in Bezug auf Effektivität der Implementierung
sowie Speicheraufwand miteinander verglichen.
Es wird auf einige verschiedene Möglichkeiten der Beschreibung von Hindernissen
sowie des Kontaktproblems zweier elastischer Körper miteinander eingegangen
und es werden Referenzimplementierungen zu diesen Problemen angegeben.
Zu den implementierten Projektoren werden Beispielrechnungen am Ende der jeweiligen Abschnitte
vorgestellt sowie die Rechenzeiten und Konvergenzverhalten restringierter und unrestringierter
Elastizitätsprobleme verglichen. Es zeigt sich dabei der Vorteil der entwickelten Verfahren in einem
vergleichbaren numerischen Aufwand zwischen restringierten und unrestringierten Problemen bei
einer übersichtlichen Implementierbarkeit und guter Stabilität.
Die Problemklasse von Restriktionen im Inneren des betrachteten Gebietes wird anhand des Clinch-Problems
formuliert, und die zur Lösung derartiger Probleme verwendeten Projektoren betrachtet.
Die Referenzimplementierung aller vorgestellen Algorithmen und Projektoren
erfolgt dabei in einem adaptiven 2D-FEM-Programm, welches
innerhalb des DFG-Sonderforschungsbereichs 393
"Parallele Numerische Simulation für Physik und Kontinuumsmechanik"
entstanden ist.
|
2 |
Unterraum-CG-Techniken zur Bearbeitung von KontaktproblemenUnger, Roman 23 February 2007 (has links)
Der Gegenstand dieser Arbeit ist die Untersuchung spezieller Lösungsmethoden
zum Problem des Kontaktes eines elastischen Körpers mit einem festen Hindernis
sowie des Kontaktes zweier elastischer Körper miteinander.
Grundlage der Betrachtungen ist dabei ein Lösungsverfahren,
das auf Unterraum-CG-Techniken beruht.
Die zu Grunde liegende partielle Differentialgleichung zur Modellierung
der Verformung eines elastischen Körpers ist die Lame-Gleichung.
Aufbauend auf dieser Gleichung wird das Problem des Kontaktes in
einer neuen Formulierung, die auch große Verformungen zuläßt, betrachtet.
Um diese Probleme mit Hilfe der Finiten-Elemente-Methode numerisch lösen zu können,
erfolgt die Betrachtung der üblichen Variationsformulierung mit Hilfe
von Variationsungleichungen sowie die Angabe einer alternativen Formulierung,
die auf einer Variationsgleichung beruht.
Zur Konstruktion eines effektiven Lösungsalgorithmus werden die Problematiken der a-posteriori
Fehlerschätzung, Voraussetzungen an Vernetzungen sowie moderner Lösungsmethoden
zum Auflösen des Finiten-Elemente-Gleichungssystems betrachtet.
Um die aus dem Kontaktproblem resultierenden Restriktionen zu erfüllen, wird die Klasse der
Unterraum-CG-Verfahren einführend betrachtet und es wird die Anpassung
dieser Verfahren auf die betrachteten Probleme vorgestellt.
Die für derartige Lösungsmethoden verwendeten Projektoren werden formuliert und es werden verschiedene
Formulierungen dieser Projektoren in Bezug auf Effektivität der Implementierung
sowie Speicheraufwand miteinander verglichen.
Es wird auf einige verschiedene Möglichkeiten der Beschreibung von Hindernissen
sowie des Kontaktproblems zweier elastischer Körper miteinander eingegangen
und es werden Referenzimplementierungen zu diesen Problemen angegeben.
Zu den implementierten Projektoren werden Beispielrechnungen am Ende der jeweiligen Abschnitte
vorgestellt sowie die Rechenzeiten und Konvergenzverhalten restringierter und unrestringierter
Elastizitätsprobleme verglichen. Es zeigt sich dabei der Vorteil der entwickelten Verfahren in einem
vergleichbaren numerischen Aufwand zwischen restringierten und unrestringierten Problemen bei
einer übersichtlichen Implementierbarkeit und guter Stabilität.
Die Problemklasse von Restriktionen im Inneren des betrachteten Gebietes wird anhand des Clinch-Problems
formuliert, und die zur Lösung derartiger Probleme verwendeten Projektoren betrachtet.
Die Referenzimplementierung aller vorgestellen Algorithmen und Projektoren
erfolgt dabei in einem adaptiven 2D-FEM-Programm, welches
innerhalb des DFG-Sonderforschungsbereichs 393
"Parallele Numerische Simulation für Physik und Kontinuumsmechanik"
entstanden ist.
|
Page generated in 0.0499 seconds