• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • Tagged with
  • 16
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Spheroidal gall formation and seedborne infestation by Plasmodiophora brassicae as overlooked aspects of clubroot biology and epidemiology

Rennie, Derek Cameron Unknown Date
No description available.
12

Clubroot in canola and cabbage in relation to soil temperature, plant growth and host resistance

Gludovacz, Thomas 09 May 2013 (has links)
The effects of diurnal temperature fluctuation and the utility of degree days for modeling clubroot on canola (Brassica napus L.) caused by Plasmodiophora brassicae Woronin were assessed using microscopy and qPCR, and in field trials. Temperature fluctuation had little effect on pathogen development. The optimal temperature for root hair infection was 25° C. Air and soil degree days and rainfall were used as metrics for estimating clubroot development, with only limited success. Several cultivars of cabbage (Brassica oleracea L. var. capitata) with unknown clubroot resistance mechanism(s) were assessed using staining and microscopy, and qPCR. In field trials, ‘Bronco’ was susceptible to clubroot (100 DSI), ‘Kilaherb’ was resistant (0 DSI), and ‘B-2819’ was intermediate (53 DSI). Plasmodiophora brassicae was present in cortical tissue of all cultivars. A delayed disease phenotype in ‘B-2819’ may indicate a quantitative resistance genotype that could be exploited in research on resistance genes and breeding.
13

Lipid-Transfer-Proteine aus Arabidopsis thaliana - physiologische und molekulare Funktionsanalyse

Jülke, Sabine 18 February 2013 (has links) (PDF)
Die durch den obligat biotrophen Protisten Plasmodiophora brassicae hervorgerufene Pflanzenkrankheit Kohlhernie verursacht weltweit hohe ökonomische Verluste. Bis heute gibt es keine effektiven Möglichkeiten, diese Pflanzenkrankheit zu bekämpfen. Eine Analyse der Genexpression in infizierten Wurzeln im Vergleich zu nicht infizierten Wurzeln ergab, dass die Gene für Lipid-Transfer-Proteine während der gesamten Krankheitsentwicklung differentiell reguliert sind. Über die Funktionen von Lipid-Transfer-Proteinen in Pflanzen wird noch spekuliert. Diskutiert wird dabei eine Funktion bei der Anpassung an verschiedene abiotische Stressfaktoren, bei der Pathogenabwehr sowie bei dem Transfer von Lipiden. In dieser Arbeit wurden transgene Pflanzen generiert, in denen die pathogenbedingte LTP-Genregulation umgekehrt ist. Es wurden transgene A. thaliana Pflanzen erzeugt, die die Gene LTP1, LTP3, LTP4, AT1G12090 sowie AT2G18370 überexprimieren und die Genexpression von AT4G33550 sowie AT1G62510 reprimieren. Die Regulation der LTP-Genexpression erfolgte dabei durch den wurzel- und keimlingsspezifischen Promotor Pyk10. Zusätzlich wurden in dieser Arbeit auch T-DNA-Insertionsmutanten für die Gene AT1G12090, AT2G18370, AT3G22620, AT5G05960, LTP3 sowie LTP4 untersucht. Mittels semiquantitativer Expressionsanalyse konnte die Modulation der LTP-Genexpression in den LTP-Mutanten bestätigt werden. Darüber hinaus konnte gezeigt werden, dass die Modulation der Expression eines LTP-Gens auch die Expression anderer LTP-Gene beeinflusst. Die phytopathologischen Analysen der LTP-Mutanten hinsichtlich der Entwicklung der Pflanzenkrankheit Kohlhernie ergab, dass die Überexpression der Gene LTP1, LTP3 sowie AT2G18370 und die Repression der Expression von AT1G62510 eine verringerte Anfälligkeit für diese Krankheit bewirkt. Die verstärkte Expression der Gene LTP1, LTP3, LTP4, AT1G12090 sowie AT2G18370 resultiert außerdem in einer verringerten Symptomentwicklung infolge einer Pseudomonas syringae-Infektion. Die verringerte Expression des Gens AT4G33550 führt hingegen zu einer größeren Anfälligkeit für eine P. brassicae Infektion; die Infektion mit P. syringae wird dadurch aber nicht beeinflusst. Die physiologische Charakterisierung der LTP-Mutanten umfasste die Analyse des Pflanzenwachstums unter Salzstress bzw. osmotischem Stress sowie die Entwicklung der Seneszenz in abgetrennten Rosettenblättern. Es konnte gezeigt werden, dass die Gene LTP1, LTP3, LTP4, AT4G33550 sowie AT1G62510 bei der Anpassung an Salzstress sowie die Gene LTP3, AT3G22620, AT4G33550 und AT1G62510 bei der Anpassung an osmotischen Stress eine Rolle spielen. Durch die Modulation der Expression der genannten Gene wird das Wachstum unter diesen Stressbedingungen sowohl positiv als auch negativ beeinflusst. Die Entwicklung der Seneszenz wird ebenfalls durch eine veränderte LTP-Genexpression (LTP1, LTP3, LTP4, AT3G22620 sowie AT4G33550) beeinflusst. Für die biochemische Charakterisierung wurden die LTP-Gene aus A. thaliana mit einem Fusionspartner in E. coli exprimiert und die resultierenden Fusionsproteine gereinigt. Diese wurden nach Abspalten des Fusionspartners hinsichtlich ihrer antimikrobiellen Aktivität und auf die Fähigkeit, Calmodulin zu binden, untersucht. Für die gereinigten Lipid-Transfer-Proteine LTP1, LTP3, LTP4, AT2G18370 sowie AT1G62510 konnte unter den bisher getesteten Versuchsbedingungen keine antimikrobielle Aktivität nachgewiesen werden. Für die Proteine LTP1, LTP3 und LTP4 konnte eine calciumunabhängige Calmodulin-Bindung nachgewiesen werden. Die Ergebnisse dieser Versuche ermöglichen keine Aussage bezüglich der genauen Funktion der einzelnen Lipid-Transfer-Proteine, geben aber Hinweise darauf, dass diese bei den entsprechenden Stress-Vorgängen eine Rolle spielen. Welche Funktion sie dabei genau erfüllen, muss in weiterführenden Analysen untersucht werden.
14

Lipid-Transfer-Proteine aus Arabidopsis thaliana - physiologische und molekulare Funktionsanalyse

Jülke, Sabine 24 September 2012 (has links)
Die durch den obligat biotrophen Protisten Plasmodiophora brassicae hervorgerufene Pflanzenkrankheit Kohlhernie verursacht weltweit hohe ökonomische Verluste. Bis heute gibt es keine effektiven Möglichkeiten, diese Pflanzenkrankheit zu bekämpfen. Eine Analyse der Genexpression in infizierten Wurzeln im Vergleich zu nicht infizierten Wurzeln ergab, dass die Gene für Lipid-Transfer-Proteine während der gesamten Krankheitsentwicklung differentiell reguliert sind. Über die Funktionen von Lipid-Transfer-Proteinen in Pflanzen wird noch spekuliert. Diskutiert wird dabei eine Funktion bei der Anpassung an verschiedene abiotische Stressfaktoren, bei der Pathogenabwehr sowie bei dem Transfer von Lipiden. In dieser Arbeit wurden transgene Pflanzen generiert, in denen die pathogenbedingte LTP-Genregulation umgekehrt ist. Es wurden transgene A. thaliana Pflanzen erzeugt, die die Gene LTP1, LTP3, LTP4, AT1G12090 sowie AT2G18370 überexprimieren und die Genexpression von AT4G33550 sowie AT1G62510 reprimieren. Die Regulation der LTP-Genexpression erfolgte dabei durch den wurzel- und keimlingsspezifischen Promotor Pyk10. Zusätzlich wurden in dieser Arbeit auch T-DNA-Insertionsmutanten für die Gene AT1G12090, AT2G18370, AT3G22620, AT5G05960, LTP3 sowie LTP4 untersucht. Mittels semiquantitativer Expressionsanalyse konnte die Modulation der LTP-Genexpression in den LTP-Mutanten bestätigt werden. Darüber hinaus konnte gezeigt werden, dass die Modulation der Expression eines LTP-Gens auch die Expression anderer LTP-Gene beeinflusst. Die phytopathologischen Analysen der LTP-Mutanten hinsichtlich der Entwicklung der Pflanzenkrankheit Kohlhernie ergab, dass die Überexpression der Gene LTP1, LTP3 sowie AT2G18370 und die Repression der Expression von AT1G62510 eine verringerte Anfälligkeit für diese Krankheit bewirkt. Die verstärkte Expression der Gene LTP1, LTP3, LTP4, AT1G12090 sowie AT2G18370 resultiert außerdem in einer verringerten Symptomentwicklung infolge einer Pseudomonas syringae-Infektion. Die verringerte Expression des Gens AT4G33550 führt hingegen zu einer größeren Anfälligkeit für eine P. brassicae Infektion; die Infektion mit P. syringae wird dadurch aber nicht beeinflusst. Die physiologische Charakterisierung der LTP-Mutanten umfasste die Analyse des Pflanzenwachstums unter Salzstress bzw. osmotischem Stress sowie die Entwicklung der Seneszenz in abgetrennten Rosettenblättern. Es konnte gezeigt werden, dass die Gene LTP1, LTP3, LTP4, AT4G33550 sowie AT1G62510 bei der Anpassung an Salzstress sowie die Gene LTP3, AT3G22620, AT4G33550 und AT1G62510 bei der Anpassung an osmotischen Stress eine Rolle spielen. Durch die Modulation der Expression der genannten Gene wird das Wachstum unter diesen Stressbedingungen sowohl positiv als auch negativ beeinflusst. Die Entwicklung der Seneszenz wird ebenfalls durch eine veränderte LTP-Genexpression (LTP1, LTP3, LTP4, AT3G22620 sowie AT4G33550) beeinflusst. Für die biochemische Charakterisierung wurden die LTP-Gene aus A. thaliana mit einem Fusionspartner in E. coli exprimiert und die resultierenden Fusionsproteine gereinigt. Diese wurden nach Abspalten des Fusionspartners hinsichtlich ihrer antimikrobiellen Aktivität und auf die Fähigkeit, Calmodulin zu binden, untersucht. Für die gereinigten Lipid-Transfer-Proteine LTP1, LTP3, LTP4, AT2G18370 sowie AT1G62510 konnte unter den bisher getesteten Versuchsbedingungen keine antimikrobielle Aktivität nachgewiesen werden. Für die Proteine LTP1, LTP3 und LTP4 konnte eine calciumunabhängige Calmodulin-Bindung nachgewiesen werden. Die Ergebnisse dieser Versuche ermöglichen keine Aussage bezüglich der genauen Funktion der einzelnen Lipid-Transfer-Proteine, geben aber Hinweise darauf, dass diese bei den entsprechenden Stress-Vorgängen eine Rolle spielen. Welche Funktion sie dabei genau erfüllen, muss in weiterführenden Analysen untersucht werden.
15

Biological control of clubroot (Plasmodiophora brassicae) by an endophytic fungus (Acremonium alternatum) / Biologische Kontrolles der Kohlhernie (Klumpfusskrankheit; Plasmodiophora brassicae) durch einen endophytischen Pilz (Acremonium alternatum)

Auer, Susann 18 September 2015 (has links) (PDF)
The biological control of plant pests with beneficial microbes has become increasingly important over the last decades. Soil microbes such as fungi and bacteria colonise the roots of plants and promote their growth. Some beneficial microbes can trigger a weak plant defence response that enhances the immune response of the plant at subsequent pathogen attacks and therefore increase the resistance of the plant to other invaders. This mechanism is called “priming”. While biocontrol agents are applied against a variety of plant pests fundamental knowledge of the molecular mechanisms of plant-microbe interactions is still lacking. Especially molecular studies on the role of resistance genes in the interaction of plants with beneficial endophytic fungi are rare. In this study it was investigated how the fungal biocontrol agent Acremonium alternatum affects the development of the clubroot pathogen Plasmodiophora brassicae within the plant host Arabidopsis thaliana. Clubroot is a devastating disease in crop plants such as cabbage and rapeseed and causes abnormal root growth that leads to so called “club roots”. P. brassicae develops within the plant roots and forms resting spores that are very durable and stay infective in soils for up to 2 decades. The control of clubroot by chemical means is difficult and the disease continues to spread on all continents and was also found in Saxony, Germany in recent years. In 2 preliminary studies the co-inoculation of clubroot plants with the fungus A. alternatum resulted in reduced clubroot symptoms in Chinese cabbage and Arabidopsis. It was therefore hypothesised that A. alternatum induces resistance mechanisms in the plant and thus enhances immunity. The focus of this study was to test this hypothesis by carrying out expression analyses on root tissue of infected Arabidopsis plants. For this the plants were inoculated with spores of P. brassicae and A. alternatum before RNA was extracted from the roots, followed by cDNA synthesis and quantitative Reverse Transcriptase Polymerase Chain Reaction (RT-qPCR). A microarray of root tissue of infected Arabidopsis plants was carried out to depict the events at the stage of initial root hair infection with the clubroot pathogen. The findings from the gene expression analyses were verified for 2 genes with Arabidopsis mutants that are defective in the respective gene and with 2 overexpressor lines. Clubroot symptoms were assessed by rating the root galls according to their stage of development. The overall plant health was further evaluated by recording the developmental stage of the plants (generative vs. vegetative), stem lengths and plant biomass. In addition, 2 local varieties of the economically important crop plant rapeseed (Brassica napus var. Ability and var. Visby) were investigated with qRT-PCR and by recording the disease parameters just described. A second goal of this study was to assess the general biocontrol potential of the yet relatively unknown endophyte A. alternatum in terms of enzymatic activity and competitive behaviour against other phytopathogenic fungi. The potential of this fungus for the use in integrative pest management was investigated. The results presented here are novel findings for this fungus and have not been studied before. The microarray from Arabidopsis roots revealed that the clubroot pathogen P. brassicae suppresses its recognition by pathogen receptors of the plant and thus prevents the host to induce resistance mechanisms. The fungus A. alternatum boosted the level of the pathogen recognition-related genes BAK1 and FLS2 and thus helped to establish early plant defence responses. PCR analyses confirmed that these early responses led to salicylic acid-dependent resistance in the plants which was maintained for several days as shown by elevated levels of the PATHOGENESIS-RELATED gene PR1. Marker genes for an alternative resistance pathway that is mediated over the plant signals jasmonate and ethylene were not activated in Arabidopsis. The co-inoculation of Arabidopsis plants with the endophyte A. alternatum resulted in a significant reduction of clubroot symptoms by up to 24%. In rapeseed the reduction of disease symptoms was 19% and 28% when the plants were treated with a crude cell wall extract of A. alternatum before inoculation with the clubroot pathogen. PCR analyses from Arabidopsis showed a strong response of pathogen recognition genes to the cell wall extract and spores of the endophytic fungus. In rapeseed all of the investigated pathogen recognition genes were upregulated after the endophyte treatment but not with the clubroot pathogen. Together with the PCR results from the microarray these findings suggest that A. alternatum primes its host plant and enhances the resistance of the plant towards P. brassicae. In addition, the fungus increased biomass, stem lengths and survival rates of clubroot-infected plants. In vitro tests revealed that the endophyte can solubilise phosphate and is not very competitive against other phytopathogenic fungi such as Aspergillus or Fusarium which is likely an effect of the relatively slow growth of the endophyte on agar plates. From this study it can be concluded that i) the fungus Acremonium alternatum induces resistance mechanisms in Arabidopsis and 2 Brassica napus cultivars and facilitates the recognition of the clubroot pathogen Plasmodiophora brassicae; ii) that Arabidopsis and Brassica react differently to this beneficial microbe, a fact that has been observed for Plasmodiophora and other microorganisms as well; iii) living spores are not necessary for clubroot biocontrol in rapeseed as a crude cell wall extract reduces symptoms more efficiently. Overall the endophyte A. alternatum is a very promising candidate for the use in integrative pest management in plant strengtheners or as biocontrol agent. / Die biologische Kontrolle von Pflanzenkrankheiten gewinnt zunehmend an Bedeutung. Bodenbewohnende Mikroben wie Pilze oder Bakterien kolonisieren die Wurzeln von Pflanzen und fördern deren Wachstum. Einige dieser förderlichen Mikroben aktivieren eine schwache Abwehrreaktion in der Pflanze die sich verstärkt bei einer weiteren Infektion mit einem Krankheitserreger. Dieser Mechanismus, den man “Priming” nennt, führt zu einer verbesserten Resistenz der Pflanze gegenüber Pflanzenpathogenen. Obwohl natürliche Schädlingsbekämpfer bereits gegen eine Vielzahl an Krankheiten eingesetzt werden, weiss man über grundsätzliche molekulare Mechanismen dieser Pflanzen-Mikroben-Interaktionen nur wenig. Besonders die Rolle von Resistenzgenen ist bisher wenig erforscht, welche bei der Beziehung zwischen Pilzen und Pflanzen eine Rolle spielen. In der hier vorliegenden Arbeit wurde untersucht, wie der endophytische Pilz Acremonium alternatum die Entwicklung des Krankheitserregers Plasmodiophora brassicae in der Pflanze Arabidopsis thaliana beeinflusst. Die Kohlhernie, ausgelöst von P. brassicae, ist eine verheerende Krankheit die u. a. bei Kohl und Raps auftritt und Wurzelgallen, so genannte “Hernien”, hervorruft. Der Krankheitserreger entwickelt sich im Wurzelsystem der Pflanze und bildet Dauersporen, die bis zu 20 Jahre lang im Boden infektiös überdauern können. Ein Eindämmen der Krankheit mit Pflanzenschutzmitteln ist durch den komplexen Lebenslauf des Erregers sehr schwierig, das führte zu einer weltweiten Verbreitung der Kohlhernie. Auch in Sachsen wurden in den letzten Jahren Fälle von Kohlhernie gemeldet. Wie 2 Studien zeigen, führt die Ko-Inokulation von Kohlhernie-erkrankten Pflanzen mit A. alternatum zu einer Verringerung der Symptome in Chinakohl und Arabidopsis. Es wurde daher die Hypothese aufgestellt, dass der Pilz Resistenzmechanismen in der Pflanze anschaltet und damit ihre Immunität erhöht. Um diese Hypothese zu testen, wurden in der hier vorliegenden Studie Genexpressionsanalysen an infizierten Arabidopsiswurzeln durchgeführt. Dafür wurden die Pflanzen zunächst mit Sporen des Kohlhernieerregers und des Pilzes inokuliert, es wurde RNA aus den Wurzeln extrahiert, in cDNA umgeschrieben und diese mittels quantitativer Reverse-Transkriptase-Polymerasenkettenreaktion (RT-qPCR) untersucht. Ein Microarray von Wurzeln infizierter Pflanzen wurde durchgeführt um die Ereignisse abzubilden, die sich zeitnah nach der Infektion in den Wurzeln abspielen. Die Ergebnisse der Genexpressionsanalysen wurden dann an Arabidopsismutanten, die einen Gendefekt im jeweiligen Gen haben, und an Überexprimierer-Pflanzen verifiziert. Kohlherniesymptome an Pflanzen wurden durch eine Kategorisierung der Schadsymptome erfasst. Die allgemeine Pflanzengesundheit sowie der Entwicklungsstand der Pflanze, Stengellängen und das Frischgewicht wurden bestimmt. Zusätzlich wurden 2 Rapssorten, die in Sachsen angebaut werden, untersucht im Hinblick auf die Krankheitsenwicklung und die Reguation von Abwehrgenen. Ein weiteres Ziel dieser Arbeit war es das Biokontrollpotential des bisher schlecht untersuchten Pilzes A. alternatum zu bestimmen. Dazu wurde in vitro die Enzymaktivität des Pilzes getestet sowie seine Konkurrenzfähigkeit gegenüber anderen pflanzenpathogenen Pilzen. Das Potential des Pilzes für die Anwendung im integrierten Pflanzenschutz wurde getestet. Die hier präsentieren Ergebnisse stellen neue Erkenntnisse dar, die für diesen Pilz noch nie untersucht wurden. Der Microarray von Arabidopsiswurzeln zeigte, dass der Kohlhernieerregers die Erkennung durch die Pflanze verhindert und damit Abwehrmechanismen verhindert. Der Pilz A. alternatum förderte die Aktivität der pflanzlichen Erkennungsrezeptoren FLS2 und BAK1 und setzte damit die Erkennung von P. brassicae in Gang. PCR-Analysen ergaben, dass diese früh induzierten Abwehrmechanismen zu einer systemischen Resistenz in der Pflanze führte durch die Aktivierung des Pathogenese-relevanten Gens PR1. Genmarker, die die Aktivität eines alternativen, von Jasmonat und Ethylen vermittelten Abwehrweges anzeigen, waren nicht ativiert. Die Ko-Inokulation von Arabidopsis mit dem Endophyten führte zu einer signifikanten Reduktion der Krankheitssymptome um 24%. In Raps betrug die Reduktion 19% und 24% wenn die Pflanzen vor der Kohlhernie-Infektion mit einem Zellwandextrakt des Pilzes behandelt wurden. Mittels PCR konnte gezeigt werden, dass Gene für das Erkennen von Pathogenen in der Wurzel von Arabidopsis auf den Zellwandextrakt und Sporen des Pilzes reagieren. In Raps wurden alle der untersuchten Erkennungsgene aufreguliert nach der Infektion mit A. alternatum, nicht jedoch bei der Infektion mit P. brassicae. Zusammenfassend lässt sich sagen, dass der endophytische Pilz A. alternatum die Wirtspflanze auf eine folgende Infektion vorbereitet (Priming) und systemische Abwehr-mechanismen in der Pflanze induziert, wenn diese mit Kohlhernie infiziert ist. Außerdem treibt der Pilz das Sprosswachstum voran, erhöht die Biomasse und fördert das Überleben von Kohlhernie-infizierten Pflanzen. In vitro-Tests ergaben, dass der Endophyt Kalziumphosphat löslich machen kann und wenig kompetitiv gegenüber Pflanzenpathogenen wie Aspergillus oder Fusarium ist. Dies ist vermutlich mit dem langsameren Wachstum des Endophyten im Gegensatz zu den anderen Pilzen zu erklären. Aus den Ergebnissen dieser Arbeit lassen sich folgende Schlüsse ziehen: i) der endophytische Pilz Acremonium alternatum induziert Resistenzmechanismen in Arabidopsis und Raps und und fördert die Erkennung des Kohlhernieerregers Plasmodiophora brassicae; ii) Arabidopsis und Raps reagieren unterschiedlich auf diesen förderlichen Pilz, ein solcher Unterschied wurde bereits für Plasmodiophora und andere Mikroben beschrieben; iii) lebende Sporen des Pilzes sind nicht notwendig um Krankheitssymptome der Kohlhernie in Raps zu verringern, ein Zellwandextrakt von A. alternatum ist dafür besser geeignet. Ganz allgemein lässt sich sagen, dass der endophytische Pilz Acremonium alternatum ein sehr vielversprechender Kandidat ist für den Einsatz im integrierten Pflanzenschutz in Pflanzenstärkungsmitteln oder als Biokontrollorganismus.
16

Biological control of clubroot (Plasmodiophora brassicae) by an endophytic fungus (Acremonium alternatum)

Auer, Susann 18 August 2015 (has links)
The biological control of plant pests with beneficial microbes has become increasingly important over the last decades. Soil microbes such as fungi and bacteria colonise the roots of plants and promote their growth. Some beneficial microbes can trigger a weak plant defence response that enhances the immune response of the plant at subsequent pathogen attacks and therefore increase the resistance of the plant to other invaders. This mechanism is called “priming”. While biocontrol agents are applied against a variety of plant pests fundamental knowledge of the molecular mechanisms of plant-microbe interactions is still lacking. Especially molecular studies on the role of resistance genes in the interaction of plants with beneficial endophytic fungi are rare. In this study it was investigated how the fungal biocontrol agent Acremonium alternatum affects the development of the clubroot pathogen Plasmodiophora brassicae within the plant host Arabidopsis thaliana. Clubroot is a devastating disease in crop plants such as cabbage and rapeseed and causes abnormal root growth that leads to so called “club roots”. P. brassicae develops within the plant roots and forms resting spores that are very durable and stay infective in soils for up to 2 decades. The control of clubroot by chemical means is difficult and the disease continues to spread on all continents and was also found in Saxony, Germany in recent years. In 2 preliminary studies the co-inoculation of clubroot plants with the fungus A. alternatum resulted in reduced clubroot symptoms in Chinese cabbage and Arabidopsis. It was therefore hypothesised that A. alternatum induces resistance mechanisms in the plant and thus enhances immunity. The focus of this study was to test this hypothesis by carrying out expression analyses on root tissue of infected Arabidopsis plants. For this the plants were inoculated with spores of P. brassicae and A. alternatum before RNA was extracted from the roots, followed by cDNA synthesis and quantitative Reverse Transcriptase Polymerase Chain Reaction (RT-qPCR). A microarray of root tissue of infected Arabidopsis plants was carried out to depict the events at the stage of initial root hair infection with the clubroot pathogen. The findings from the gene expression analyses were verified for 2 genes with Arabidopsis mutants that are defective in the respective gene and with 2 overexpressor lines. Clubroot symptoms were assessed by rating the root galls according to their stage of development. The overall plant health was further evaluated by recording the developmental stage of the plants (generative vs. vegetative), stem lengths and plant biomass. In addition, 2 local varieties of the economically important crop plant rapeseed (Brassica napus var. Ability and var. Visby) were investigated with qRT-PCR and by recording the disease parameters just described. A second goal of this study was to assess the general biocontrol potential of the yet relatively unknown endophyte A. alternatum in terms of enzymatic activity and competitive behaviour against other phytopathogenic fungi. The potential of this fungus for the use in integrative pest management was investigated. The results presented here are novel findings for this fungus and have not been studied before. The microarray from Arabidopsis roots revealed that the clubroot pathogen P. brassicae suppresses its recognition by pathogen receptors of the plant and thus prevents the host to induce resistance mechanisms. The fungus A. alternatum boosted the level of the pathogen recognition-related genes BAK1 and FLS2 and thus helped to establish early plant defence responses. PCR analyses confirmed that these early responses led to salicylic acid-dependent resistance in the plants which was maintained for several days as shown by elevated levels of the PATHOGENESIS-RELATED gene PR1. Marker genes for an alternative resistance pathway that is mediated over the plant signals jasmonate and ethylene were not activated in Arabidopsis. The co-inoculation of Arabidopsis plants with the endophyte A. alternatum resulted in a significant reduction of clubroot symptoms by up to 24%. In rapeseed the reduction of disease symptoms was 19% and 28% when the plants were treated with a crude cell wall extract of A. alternatum before inoculation with the clubroot pathogen. PCR analyses from Arabidopsis showed a strong response of pathogen recognition genes to the cell wall extract and spores of the endophytic fungus. In rapeseed all of the investigated pathogen recognition genes were upregulated after the endophyte treatment but not with the clubroot pathogen. Together with the PCR results from the microarray these findings suggest that A. alternatum primes its host plant and enhances the resistance of the plant towards P. brassicae. In addition, the fungus increased biomass, stem lengths and survival rates of clubroot-infected plants. In vitro tests revealed that the endophyte can solubilise phosphate and is not very competitive against other phytopathogenic fungi such as Aspergillus or Fusarium which is likely an effect of the relatively slow growth of the endophyte on agar plates. From this study it can be concluded that i) the fungus Acremonium alternatum induces resistance mechanisms in Arabidopsis and 2 Brassica napus cultivars and facilitates the recognition of the clubroot pathogen Plasmodiophora brassicae; ii) that Arabidopsis and Brassica react differently to this beneficial microbe, a fact that has been observed for Plasmodiophora and other microorganisms as well; iii) living spores are not necessary for clubroot biocontrol in rapeseed as a crude cell wall extract reduces symptoms more efficiently. Overall the endophyte A. alternatum is a very promising candidate for the use in integrative pest management in plant strengtheners or as biocontrol agent. / Die biologische Kontrolle von Pflanzenkrankheiten gewinnt zunehmend an Bedeutung. Bodenbewohnende Mikroben wie Pilze oder Bakterien kolonisieren die Wurzeln von Pflanzen und fördern deren Wachstum. Einige dieser förderlichen Mikroben aktivieren eine schwache Abwehrreaktion in der Pflanze die sich verstärkt bei einer weiteren Infektion mit einem Krankheitserreger. Dieser Mechanismus, den man “Priming” nennt, führt zu einer verbesserten Resistenz der Pflanze gegenüber Pflanzenpathogenen. Obwohl natürliche Schädlingsbekämpfer bereits gegen eine Vielzahl an Krankheiten eingesetzt werden, weiss man über grundsätzliche molekulare Mechanismen dieser Pflanzen-Mikroben-Interaktionen nur wenig. Besonders die Rolle von Resistenzgenen ist bisher wenig erforscht, welche bei der Beziehung zwischen Pilzen und Pflanzen eine Rolle spielen. In der hier vorliegenden Arbeit wurde untersucht, wie der endophytische Pilz Acremonium alternatum die Entwicklung des Krankheitserregers Plasmodiophora brassicae in der Pflanze Arabidopsis thaliana beeinflusst. Die Kohlhernie, ausgelöst von P. brassicae, ist eine verheerende Krankheit die u. a. bei Kohl und Raps auftritt und Wurzelgallen, so genannte “Hernien”, hervorruft. Der Krankheitserreger entwickelt sich im Wurzelsystem der Pflanze und bildet Dauersporen, die bis zu 20 Jahre lang im Boden infektiös überdauern können. Ein Eindämmen der Krankheit mit Pflanzenschutzmitteln ist durch den komplexen Lebenslauf des Erregers sehr schwierig, das führte zu einer weltweiten Verbreitung der Kohlhernie. Auch in Sachsen wurden in den letzten Jahren Fälle von Kohlhernie gemeldet. Wie 2 Studien zeigen, führt die Ko-Inokulation von Kohlhernie-erkrankten Pflanzen mit A. alternatum zu einer Verringerung der Symptome in Chinakohl und Arabidopsis. Es wurde daher die Hypothese aufgestellt, dass der Pilz Resistenzmechanismen in der Pflanze anschaltet und damit ihre Immunität erhöht. Um diese Hypothese zu testen, wurden in der hier vorliegenden Studie Genexpressionsanalysen an infizierten Arabidopsiswurzeln durchgeführt. Dafür wurden die Pflanzen zunächst mit Sporen des Kohlhernieerregers und des Pilzes inokuliert, es wurde RNA aus den Wurzeln extrahiert, in cDNA umgeschrieben und diese mittels quantitativer Reverse-Transkriptase-Polymerasenkettenreaktion (RT-qPCR) untersucht. Ein Microarray von Wurzeln infizierter Pflanzen wurde durchgeführt um die Ereignisse abzubilden, die sich zeitnah nach der Infektion in den Wurzeln abspielen. Die Ergebnisse der Genexpressionsanalysen wurden dann an Arabidopsismutanten, die einen Gendefekt im jeweiligen Gen haben, und an Überexprimierer-Pflanzen verifiziert. Kohlherniesymptome an Pflanzen wurden durch eine Kategorisierung der Schadsymptome erfasst. Die allgemeine Pflanzengesundheit sowie der Entwicklungsstand der Pflanze, Stengellängen und das Frischgewicht wurden bestimmt. Zusätzlich wurden 2 Rapssorten, die in Sachsen angebaut werden, untersucht im Hinblick auf die Krankheitsenwicklung und die Reguation von Abwehrgenen. Ein weiteres Ziel dieser Arbeit war es das Biokontrollpotential des bisher schlecht untersuchten Pilzes A. alternatum zu bestimmen. Dazu wurde in vitro die Enzymaktivität des Pilzes getestet sowie seine Konkurrenzfähigkeit gegenüber anderen pflanzenpathogenen Pilzen. Das Potential des Pilzes für die Anwendung im integrierten Pflanzenschutz wurde getestet. Die hier präsentieren Ergebnisse stellen neue Erkenntnisse dar, die für diesen Pilz noch nie untersucht wurden. Der Microarray von Arabidopsiswurzeln zeigte, dass der Kohlhernieerregers die Erkennung durch die Pflanze verhindert und damit Abwehrmechanismen verhindert. Der Pilz A. alternatum förderte die Aktivität der pflanzlichen Erkennungsrezeptoren FLS2 und BAK1 und setzte damit die Erkennung von P. brassicae in Gang. PCR-Analysen ergaben, dass diese früh induzierten Abwehrmechanismen zu einer systemischen Resistenz in der Pflanze führte durch die Aktivierung des Pathogenese-relevanten Gens PR1. Genmarker, die die Aktivität eines alternativen, von Jasmonat und Ethylen vermittelten Abwehrweges anzeigen, waren nicht ativiert. Die Ko-Inokulation von Arabidopsis mit dem Endophyten führte zu einer signifikanten Reduktion der Krankheitssymptome um 24%. In Raps betrug die Reduktion 19% und 24% wenn die Pflanzen vor der Kohlhernie-Infektion mit einem Zellwandextrakt des Pilzes behandelt wurden. Mittels PCR konnte gezeigt werden, dass Gene für das Erkennen von Pathogenen in der Wurzel von Arabidopsis auf den Zellwandextrakt und Sporen des Pilzes reagieren. In Raps wurden alle der untersuchten Erkennungsgene aufreguliert nach der Infektion mit A. alternatum, nicht jedoch bei der Infektion mit P. brassicae. Zusammenfassend lässt sich sagen, dass der endophytische Pilz A. alternatum die Wirtspflanze auf eine folgende Infektion vorbereitet (Priming) und systemische Abwehr-mechanismen in der Pflanze induziert, wenn diese mit Kohlhernie infiziert ist. Außerdem treibt der Pilz das Sprosswachstum voran, erhöht die Biomasse und fördert das Überleben von Kohlhernie-infizierten Pflanzen. In vitro-Tests ergaben, dass der Endophyt Kalziumphosphat löslich machen kann und wenig kompetitiv gegenüber Pflanzenpathogenen wie Aspergillus oder Fusarium ist. Dies ist vermutlich mit dem langsameren Wachstum des Endophyten im Gegensatz zu den anderen Pilzen zu erklären. Aus den Ergebnissen dieser Arbeit lassen sich folgende Schlüsse ziehen: i) der endophytische Pilz Acremonium alternatum induziert Resistenzmechanismen in Arabidopsis und Raps und und fördert die Erkennung des Kohlhernieerregers Plasmodiophora brassicae; ii) Arabidopsis und Raps reagieren unterschiedlich auf diesen förderlichen Pilz, ein solcher Unterschied wurde bereits für Plasmodiophora und andere Mikroben beschrieben; iii) lebende Sporen des Pilzes sind nicht notwendig um Krankheitssymptome der Kohlhernie in Raps zu verringern, ein Zellwandextrakt von A. alternatum ist dafür besser geeignet. Ganz allgemein lässt sich sagen, dass der endophytische Pilz Acremonium alternatum ein sehr vielversprechender Kandidat ist für den Einsatz im integrierten Pflanzenschutz in Pflanzenstärkungsmitteln oder als Biokontrollorganismus.

Page generated in 0.036 seconds