• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 8
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geological controls for coal exploration and mining

Noppé , Mark Adrian January 1992 (has links)
The identification and interpretation of geological features is essential for the planning and ultimate success of any mining venture. Examples of geological features significant for mining are presented, and their identification during exploration discussed. In particular, the importance of coal qualities, seam thickness and seam elevation are emphasised in relation to longwall mining. Geostatistical analysis provides a powerful tool for improving the prediction and decision-making capabilities of both exploration and mine geologists. The availability of geostatistics, and the benefits resulting from its application, are demonstrated using actual data for calorific value, seam thickness and seam elevation. Contamination of run-of-mine coal is a common problem on highly-mechanised collieries. The problem generally arises from over-cutting of the designated mining horizon. A practical system for monitoring and controlling contamination on a mechanised bord-and-pillar and longwall colliery is presented. The results and benefits of applying such a system are cited for an actual longwall colliery. Numerical geological predictions are not always reported in terms of the reliability of such estimates. Many of these values can be reported in terms of confidence limits, particularly for routine grade control purposes. The methods and benefits of such reporting are described and illustrated by way of examples for calorific value and contamination levels.
2

Some palaeobotanical studies of the coal measures of Queensland : I. The jurassic flora of the Walloon coal measures - Hepaticae (?), Equisetaceae, Osmundaceae, II. Upper Permain (sic) osmundaceous trunks from the Bowen Basin

Gould, Rodney Edward. Unknown Date (has links)
No description available.
3

The geological framework and depositional environments of the coal-bearing Karoo strata in the Central Kalahari Karoo Basin, Botswana

Segwabe, Tebogo January 2009 (has links)
The investigation of the geological history (i.e., stratigraphy and sedimentology) and the dynamics of coal depositional environments, in particular, the forces responsible for changes in the accommodation space (e.g., subsidence vs. sedimentation rates) in the Permian coal-bearing Karoo strata in the Central Kalahari Karoo Basin (Botswana) revealed new details about the depositional processes and environments. Detailed review of the temporal and spatial stratigraphic variation of the coal-bearing Ecca Group successions via the analysis of facies changes based on core descriptions, gamma logs, field observations and palaeo-current measurements, lead to the identification of two main informal stratigraphic units, namely the Basal and Upper Units. The Basal Unit is characterised by an upward-coarsening succession, and it is interpreted as a product of a progradational deltaic setting (i.e., regressive deltaic cycle). This is followed by five sequences of fining-upward successions of sandstones and siltstones in the Upper Unit, interpreted as deposits of distributary channels (the basal arenaceous member) capped by finer argillaceous sequences of the deltaic floodplains (the upper coal-bearing member). The Upper Unit thus is interpreted as a delta plain facies association which was formed during transgressive phases when conditions for coal-quality peat accumulation (e.g., high water table) were present and the available accommodation space was partly controlled by tectonic uplift (repeated?) at basin margins. Limited palaeo-current analysis indicates deposition by channels flowing from the east, south-east and north-east. The lack of good quality exposures hampers the reconstruction of the plan form of the channel patterns. However, the little available evidence indicates a high-energy fluvio-deltaic system with irregular discharge and a high proportion of bedload sediments. Coal-seam thickness in the upper coal-bearing member reflect the complex control of the geological processes associated with and following peat formation, such as differential compaction of the underlying lithology, and the erosive or protective nature of the immediately overlying lithology.
4

Structural features of coal measures of the Kootenay formation, southeastern Canadian Rocky Mountains

Bustin, R. Marc January 1980 (has links)
Coal measures of the Late Jurassic-Early Cretaceous Kootenay Formation are complexly deformed in the southeastern Canadian Rocky Mountains. The structural style and associated features of the coal measures are in part characteristic of the ‘Foothills Family’ of structures. In addition, by virtue of the major contrast in competency between the coal seams and adjacent strata, the structural features of the coal measures display considerable variation which, to some extent, can be correlated with the regional and local structural setting., The variation in the structural features of the coal measures have a marked influence on the mineability of the coal and both directly and indirectly on coal quality. During deformation the coal seams were the loci of interstratal slip, thrust faulting and detachment during folding.. The coal seams vary markedly in thickness; in some areas coal seams have been thickened as much as an order of magnitude in response to thrust faulting, normal faulting and folding, whereas in other adjacent areas, the seams may be completely pinched-off or faulted out. Structural thickening of the coal seams has been facilitated by cataclastic flow of the finely sheared coal along a myriad of discrete shear surfaces. The mesoscopic and microscopic fabric of the coal is cataclastic with the exception of local areas of apparently high strain where the vitrain and clarain components have behaved plastically. Shearing of the coal and adjacent strata has resulted in the introduction and dissemination of formerly discrete rock partings which in turn have produced abnormally high ash contents and poor washability characteristics and has made the coal more susceptible to oxidation. Measurement of vitrinite reflectance of coal in some major shear zones suggests, by comparisipn with samples heated in the laboratory for short durations, that frictional heating during shearing may have resulted in temperatures of up to 450°C. . Adjacent to and within other shear zones there is no evidence for frictional heating. The presence or absence of frictional heating may be the result respectively of stick-slip and stable sliding conditions during shear, which in turn may be a product of variable pore pressures. In underground mines the structural features of the roof rock and the coal seams have a pronounced effect on roof stability.. In the Vicary Creek mine, located in the hanging wall of the Coleman Fault, the Number 2 seam and some of the roof rock were pervasively sheared as a result of interstratal slip during flexure of the coal measures and possibly as a result of drag from overriding thrust faults. In such areas the coal pillars have low bearing strength and the cohesion between successive beds in the immediate roof rock has been destroyed, resulting in poor roof conditions. Slickenside striae on bedding surfaces, joints in the roof strata and some extension faults which cut the seam, define a kinematic and dynamic pattern which is consistent with the regional structure. In the Balmer North, Five Panel and Six Panel mines, located in the northern part of the Fernie synclinorium, the coal measures are only mildly deformed. A cleat system is present at all sample localities but no consistent pattern exists which can be related to the overall structure or to joints in the roof and floor.. In the Balmer North mine, young, gently west dipping, shear surfaces are present throughout which, in conjunction with slickensided bedding surfaces, have promoted roof and coal rib failure along north to northwesterly trends. In the Five Panel mine roof and coal rib failure have been facilitated by steep easterly dipping fractures. The absence of a consistent joint or cleat pattern in the Balmer North, Five Panel or Six Panel mines may be the result of mechanical anisotropy of the strata or of multiple episodes of deformation. Striated structures, many of which are conical in form, are common mesoscopic elements on fracture surfaces in the deformed coal. . Such structures, although rarely reported previously in the literature, occur at many localities in the study area. The structures are planar, conical and pyramidal in form, and are characterized by striae which radiate from a common apex and 'horsetail' to form subsidiary structures on the master surface. All three types of striated structures are considered the products of dynamic, brittle shear fracture which was possibly facilitated at failure by high inter- and/or intra-particle pore pressure. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
5

Petrology of Jurassic coal, Hill River area, Perth Basin, Western Australia

Suwarna, Nana January 1993 (has links)
The Early Jurassic coal samples for the study were obtained from CRA Exploration Pty Ltd. (CRAE), drilled in the Gairdner and Mintaja Blocks, Gairdner Range of the Hill River Area, northern Perth Basin, Western Australia. The area is located approximately 280 km north of Perth. The coal measures subcrop in a half- graben bounded by the Lesueur-Peron Fault in the west, and the Warradarge Fault in the east. The coal occurs within the shallow sequence of the Cattamarra Member which is also described as the Cattamarra Coal Measures of the Cockleshell Gully Formation.Six sub-seams of seam G, namely G1 to G6, from the six drill cores, were examined for petrological and geochemical investigation. The coal predominantly comprises of banded, dull banded, and dull lithotypes, with minor bright banded, bright and fusainous types. Based on maceral analyses, the dominant maceral groups are vitrinite and inertinite, whilst the exinite and mineral matter are in minor contents. The vitrinite content has a range between 47.2 % to 73.0 %, and it is composed mainly of telocollinite and desmocollinite. The inertinite is dominated by semifusinite, fusinite, and inertodetrinite, and it has a range from 10.4 % to 24.8 %. The exinite group varies between 7.2 % to 20.8 % in content, and it is represented by sporinite, cutinite, alginite and resinite. The mineral matter dominated by clays and pyrite, ranges between 4.5 % to 20.6 %. The microlithotype analyses shows that the vitrite plus clarite content varies from 47.0 % to 70.0 %, intermediates between 8.0% to 26.0 %, whilst inertite plus durite content is relatively low, varying from 6.55 % to 14.0 %. The maximum reflectance of vitrinite has a value between 0.47 % and 0.53 %, which represents rank at sub-bituminous level based on the Australian rank values and corresponding to the sub-bituminous A and B rank of the ASTM classification and ++ / to the metalignitous type of the Pareek classification. On the basis of carbon and hydrogen content, the coal is categorised as per-hydrous meta- to ortho-lignitous type. The trace elements As, B, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sr, Th, U, V, Y, Zn, and Zr, are spectrographically analysed in the coal ash. The B content in the coal supports the presence of marine influence during peat deposition in the basin.On the basis of lithotype, maceral, microlithotype, trace element distribution, pyrite and total sulphur in the coal, the depositional environment for coal and the coal measures, is interpreted as an upper to lower delta type within a regressive phase of marine transgression.
6

Reservoir characterization through the application of seismic attributes : multiattribute and unsupervised seismic facies analyses

Marroquín Herrera, Iván Dimitri January 2007 (has links)
Seismic attributes are a descriptive and quantifiable characteristic of seismic data, and so they represent subsets of the total information contained in the original seismic data. Consequently, seismic attrjbutes can be important qualitative and quantitative predictors of physical reservoir properties. Seismic attribute analysis began with the search for bright spots in the late 1960s and early 1970s. Subsequent work in the last decades has established seismic attribute analysis as a valuable tool in reservoir characterization studies. I present in this thesis two seismic attribute analyses for the interpretation of the characteristics of the seismic trace to predict significant geological features (e.g., lithology, rock properties and/or fluid content). The first study is an example of the applicability of seismic attributes to predict geologic controls on production data in a coal bed methane reservoir. Based on the calibration of log data with seismic data procedure, I defined a window of analysis, from which I computed amplitude, frequency and phase related attributes. Then, I used a quantitative multiattribute analysis to derive a seismic attribute-based model that predicts coal thickness. Thereafter, I used with a curvature attribute analysis with the objective to map subtle structural features and predict areas with enhanced permeability. The integration of production data with results achieved from both attribute analyses indicates that best production is associated with thicker coal and the immediate vicinity to seismically defined structures. [...] / Les attributs sismiques ont comme caractéristique de pouvoir décrire et quantifier les données sismiques, de telle manière qu’ils représentent un sous-ensemble de l’information totale contenue dans les données originales. En conséquence, les attributs sismiques peuvent être d’importants paramètres qualitatifs et quantitatifs des propriétés physiques d’un réservoir. L’analyse d’attributs sismiques a commencé avec la prospection de tâches lumineuses (<< bright spots >>) vers la fin des années 1960 et début des années 1970. Des travaux subséquents pendant les dernières décennies ont permis d’établir l’analyse d’attributs sismiques comme un outil valable lors d’études de caractérisation d’un réservoir. Je présente dans cette thèse deux études d’attributs sismiques pour l’interprétation de la forme de la trace sismique afin de prédire des caractéristiques géologiques significatives tels que: la lithologie, les propriétés des roches et/ou le contenu liquide. La première étude est un exemple de l’application d’attributs sismiques pour prédire des contrôles géologiques sur la production d’un réservoir coalbed methane. D’après les résultats de la calibration des diagraphies au câble avec des données sismiques, j’ai défini une fenêtre d’investigation à partir de laquelle des attributs sismiques de type amplitude, fréquence et phase ont été calculés. J’ai utilisé une analyse muIti-attribut pour dériver un model statistique dans le but d’estimer l’épaisseur du réservoir. Par la suite, j’ai utilisé des attributs mesurant la courbature d’une surface pour mettre en relief de subtiles structures géologiques et prédire les régions dans le réservoir avec une perméabilité augmentée. L’intégration des données de production avec les résultats obtenus lors d’analyses d’attributs sismiques indique que la meilleure production est en association avec l’épaississement du réservoir et le voisinage immédiat de structures géologiques. [...]
7

Stratigraphy, sedimentology and coal quality of the Lower Skeena Group, Telkwa Coalfield, Central British Columbia

Palsgrove, Regan Jane January 1990 (has links)
The Albian Lower Skeena Group in the Telkwa coalfield comprises more than 500 metres of conglomerate, sandstone, siltstone, mudstone and coal deposited during two regressive/transgressive cycles. The stratigraphic sequence is divisible into four lithostratigraphic units. The basal unit, Unit I, may be more than 100 metres thick and comprises conglomerate, sandstone, mudstone, coal, and seat earth. Conglomerate and sandstone are composed dominantly of chert and volcanic rock fragments, and mudstones are kaolinitic. Unit I was deposited in a fluvial environment on an eroded volcanic basement. Gravel and sand were deposited in braided channels and bars, and mudstone accumulated in floodplains. Coal formed in poorly drained, peat-forming backswamps. In the northern part of the study area, coal seams thin and split, a result of periodic flooding of peat swamps with sediment-laden water from nearby streams. Deposition of Unit I ended with a marine transgression and deposition of Unit II. Unit II consists of up to 140 metres of silty mudstone, bioturbated or cross-bedded, chert and muscovite-rich sandstone, and rare thin coaly mudstones deposited in a deltaic/shallow marine environment. Sand was deposited in distributary channels and mouth-bars, mud accumulated in bays, and thin discontinuous peat beds accumulated in local salt marshes. There is structural evidence for the presence of an unconformity within Unit II, but palynological and paleontological data suggest that the strata are all similarly aged. Unit III averages 90 metres thick, and comprises bioturbated or rippled, chert and muscovite-rich sandstone, siltstone, carbonaceous mudstone and thick, laterally extensive coal seams deposited in a variety of low-energy, paralic environments. Sand and mud were deposited and biogenically reworked in tidal flats, and siltstone accumulated in a restricted, nearshore marine environment in the eastern edge of the study area. Peat accumulated in freshwater coastal marshes which periodically prograded over tidal flats. All but the lowermost coal seams pinch out eastward into restricted, nearshore marine sediments, and the ash content of the coal increases toward the margin of the seam. Locally, the sulphur content of the coal is high, reflecting occasional inundation of the fresh-water swamps by brackish water. High sulphur coal contains relatively more pyritic sulphur and less organic sulphur, compared to low-sulphur coal. Unit IV is at least 150 metres thick and is composed of chloritic, green sandstone overlain by silty mudstone, deposited in a marine environment. The basal sandstone is a transgressive lag deposit, and silty mudstone, the predominant lithofacies, was deposited in a nearshore, shallow marine environment. The provenance of the sediments in the Telkwa coalfield changes from the base to the top of the stratigraphic section. Conglomerate and sandstone of Unit I contain an abundance of volcanic clasts and grains, locally derived from underlying and surrounding volcanic rocks of the Jurassic Hazelton Group, which were uplifted as part of the Skeena Arch and subsequently eroded and reworked. Sandstones of Units II, III and IV, which contain much less volcanic-derived material and an abundance of mica flakes, were derived from high-grade metamorphic rocks in the Omineca Belt. Chert grains are abundant throughout, reflecting continued clastic influx from the Pinchi Belt-Columbian Orogen. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
8

Reservoir characterization through the application of seismic attributes : multiattribute and unsupervised seismic facies analyses

Marroquín Herrera, Iván Dimitri January 2007 (has links)
No description available.
9

Sedimentologie en palinologie van die permiese Vryheid formasie in die Greenside-steenkoolmyn, Witbank-steenkoolveld, Suid-Afrika

17 November 2014 (has links)
M.Sc. (Geology) / Please refer to full text to view abstract
10

Stratigraphy and deposition of the Price Formation coals in Montgomery and Pulaski Counties, Virginia

Brown, K. Elizabeth January 1983 (has links)
The conclusion of this investigation, based on field mapping and measured sections, is the Price Formation was deposited on a high-energy shoreline. Sediments for the shoreline were initially transported from a northern deltaic source. The Cloyd Conglomerate Member represents offshore barrier bars, while the Lower Price unit was deposited in a lagoon behind the bars. At the top of the Lower Price unit, the "marker bed" sandstone includes sedimentary features of marine and fluvial origin. This sandstone is interpreted as a delta-front sand, reworked from distributary mouth bars. The Langhorn and Merrimac coal seams were deposited in swamps formed across the sandstone. / Master of Science

Page generated in 0.0376 seconds