• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 54
  • 46
  • 5
  • 4
  • 1
  • Tagged with
  • 182
  • 182
  • 78
  • 78
  • 55
  • 52
  • 52
  • 50
  • 43
  • 41
  • 29
  • 28
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Fermions and Bosons on an Atom Chip

Extavour, Marcius H. T. 18 February 2010 (has links)
Ultra-cold dilute gases of neutral atoms are attractive candidates for creating controlled mesoscopic quantum systems. In particular, quantum degenerate gases of bosonic and fermionic atoms can be used to model the correlated many-body behaviour of Bose and Fermi condensed matter systems, and to study matter wave interference and coherence. This thesis describes the experimental realization and manipulation of Bose-Einstein condensates (BECs) of 87Rb and degenerate Fermi gases (DFGs) of 40K using static and dynamic magnetic atom chip traps. Atom chips are versatile modern tools used to manipulate atomic gases. The chips consist of micrometre-scale conductors supported by a planar insulating substrate, and can be used to create confining potentials for neutral atoms tens or hundreds of micrometres from the chip surface. We demonstrate for the first time that a DFG can be produced via sympathetic cooling with a BEC using a simple single-vacuum-chamber apparatus. The large 40K-87Rb collision rate afforded by the strongly confining atom chip potential permits rapid cooling of 40K to quantum degeneracy via sympathetic cooling with 87Rb. By studying 40K-87Rb cross-thermalization as a function of temperature, we observe the Ramsauer-Townsend reduction in the 40K-87Rb elastic scattering cross-section. We achieve DFG temperatures as low as T = 0.1TF , and observe Fermi pressure in the time-of-flight expansion of the gas. This thesis also describes the radio-frequency (RF) manipulation of trapped atoms to create dressed state double-well potentials for BEC and DFG.We demonstrate for the first time that RF-dressed potentials are species-selective, permitting the formation of simultaneous 87Rb double-well and 40K single-well potentials using a 40K-87Rb mixture. We also develop tools to measure fluctuations of the relative atom number and relative phase of a dynamically split 87Rb BEC. In particular, we observe atom number fluctuations at the shot-noise level using time-of-flight absorption imaging. These measurement tools lay the foundation for future investigations of number squeezing and matter wave coherence in BEC and DFG systems.
162

Fermions and Bosons on an Atom Chip

Extavour, Marcius H. T. 18 February 2010 (has links)
Ultra-cold dilute gases of neutral atoms are attractive candidates for creating controlled mesoscopic quantum systems. In particular, quantum degenerate gases of bosonic and fermionic atoms can be used to model the correlated many-body behaviour of Bose and Fermi condensed matter systems, and to study matter wave interference and coherence. This thesis describes the experimental realization and manipulation of Bose-Einstein condensates (BECs) of 87Rb and degenerate Fermi gases (DFGs) of 40K using static and dynamic magnetic atom chip traps. Atom chips are versatile modern tools used to manipulate atomic gases. The chips consist of micrometre-scale conductors supported by a planar insulating substrate, and can be used to create confining potentials for neutral atoms tens or hundreds of micrometres from the chip surface. We demonstrate for the first time that a DFG can be produced via sympathetic cooling with a BEC using a simple single-vacuum-chamber apparatus. The large 40K-87Rb collision rate afforded by the strongly confining atom chip potential permits rapid cooling of 40K to quantum degeneracy via sympathetic cooling with 87Rb. By studying 40K-87Rb cross-thermalization as a function of temperature, we observe the Ramsauer-Townsend reduction in the 40K-87Rb elastic scattering cross-section. We achieve DFG temperatures as low as T = 0.1TF , and observe Fermi pressure in the time-of-flight expansion of the gas. This thesis also describes the radio-frequency (RF) manipulation of trapped atoms to create dressed state double-well potentials for BEC and DFG.We demonstrate for the first time that RF-dressed potentials are species-selective, permitting the formation of simultaneous 87Rb double-well and 40K single-well potentials using a 40K-87Rb mixture. We also develop tools to measure fluctuations of the relative atom number and relative phase of a dynamically split 87Rb BEC. In particular, we observe atom number fluctuations at the shot-noise level using time-of-flight absorption imaging. These measurement tools lay the foundation for future investigations of number squeezing and matter wave coherence in BEC and DFG systems.
163

Towards quantum telecommunication and a Thorium nuclear clock

Radnaev, Alexander G. 17 August 2012 (has links)
This thesis presents the investigations of Rubidium atoms in magneto-optical traps and triply charged Thorium ions in electrodynamic traps for future advances in long-distance quantum telecommunication, next generation clocks, and fundamental tests of current physical theories. Experimental realizations of two core building blocks of a quantum repeater are described: a multiplexed quantum memory and a telecom interface for long-lived quantum memories. A color change of single-photon level light fields by several hundred nanometers in an optically thick cold gas is demonstrated, while preserving quantum entanglement with a remotely stored matter excitation. These are essential elements for long-distance quantum telecommunication, fundamental tests of quantum mechanics, and applications in secure communication and computation. The first trapping and laser cooling of Thorium-229 ions are described. Thorium-229 nuclear electric quadrupole moment is revealed by hyperfine spectroscopy of triply charged Thorium-229 ions. A system to search for the isomer nuclear transition in Thorium-229 is developed and tested with the excitation of a forbidden electronic transition at 717 nm. Direct excitation of the nuclear transition with laser light would allow for an extremely accurate clock and a sensitive test bed for variations of fundamental physical constants, including the fine structure constant.
164

Studies of "clean" and "disordered" Bilayer Optical Lattice Systems Circumventing the 'fermionic Cooling-problem'

Prasad, Yogeshwar January 2018 (has links) (PDF)
The advancement in the eld of cold-atoms has generated a lot of interest in the condensed matter community. Cold-atom experiments can simulate clean, disor-der/impurity free systems very easily. In these systems, we have a control over various parameters like tuning the interaction between particles by the Feshbach resonance, tuning the hopping between lattice sites by laser intensity and so on. As a result, these systems can be used to mimic various theoretical models, which was hindered because of various experimental limitations. Thus, we have an ex-perimental tool in which we can start with a simple theoretical model and later tune the model experimentally and theoretically to simulate the real materials. This will be helpful in studying the physics of the real materials as we can control interactions as well as the impurities can also be taken care of. But the advance-ment in the eld of cold atoms has seen a roadblock for the fermions in optical lattices. The super uid and anti-ferromagnetic phases has not been achieved for fermions in optical lattices due to the \cooling problem" (entropy issues). In this thesis, we have addressed the issue of the \cooling problem" for fermions in optical lattice systems and studied the system with determinant quantum Monte Carlo technique. We start by giving a general idea of cold-atoms and optical lat-tice potentials, and a brief review of the experimental work going on in the cold-atomic systems. Experimental limitations like \fermionic cooling problem" have been discussed in some detail. Then we proposed a bilayer band-insulator model to circumvent the \entropy problem" and simultaneously increasing the transi-tion temperature for fermions in optical lattices. We have studied the attractive Hubbard model, which is the minimal model for fermions in optical lattices. The techniques that we have used to study the model are mean- eld theory, Gaussian uctuation theory and determinant quantum Monte Carlo numerical technique. . Chapter-1 : provides a general introduction to the ultra-cold atoms, optical lattice and Feshbach resonance. In this chapter we have discussed about cold-atom experiments in optical lattice systems. Here, we have brie y discussed the control over various parameters in the experiments. The goal of these experiments is to realize or mimic many many-body Hamiltonians in experiments, which until now was just a theoretical tool to describe various many-body physics. In the end we give a brief idea for introducing disorder in the cold-atom experiments discuss the limitations of these experiments in realizing the \interesting" super uid and anti-ferromagnetic phases of fermionic Hubbard model in optical lattices. Chapter-2 : gives a brief idea of \Determinant Quantum Monte-Carlo" (DQM C) technique that has been used to study these systems. In this chapter we will discuss the DQM C algorithm and the observables that can be calculated. We will discuss certain limitation of the DQM C algorithm like numerical instability and sign problem. We will brie y discuss how sign problem doesn't occur in the model we studied. Chapter-3 : discusses the way by which we can bypass the \cooling problem" (high entropy state) to get a fermionic super uid state in the cold atom experi-ments. In this chapter we propose a model whose idea hinges on a low-entropy band-insulator state, which can be tuned to super uid state by tuning the on-site attractive interaction by Feshbach resonance. We show through Gaussian uctua-tion theory that the critical temperature achieved is much higher in our model as compared to the single-band Hubbard model. Through detailed variational Monte Carlo calculations, we have shown that the super uid state is indeed the most stable ground state and there is no other competing order. In the end we give a proposal for its realization in the ultra-cold atom optical lattice systems. Chapter-4 : discusses the DQM C study of the model proposed in chapter- 3. Here we have studied the various single-particle properties like momentum distribution, double occupancies which can be easily measured in cold-atom ex-periments. We also studied the pair-pair and the density-density correlations in detail through DQM C algorithm and mapped out the full T U phase diagram. We show that the proposed model doesn't favor the charge density wave for the interaction strengths we are interested in. Chapter-5 : gives a brief idea of the e ect of adding an on-site random disorder in our proposed bilayer-Hubbard model. We study the e ect of random disorder on various single-particle properties which can be easily veri ed in cold-atom ex-periments. We studied the suppression of the pair-pair correlations as we increase the disorder strength in our proposed model. We nd that the critical value of the interaction doesn't change in the weak-disorder limit. We estimated the critical disorder strength needed to destroy the super uid state and argued that the tran-sition from the super uid to Bose-glass phase in presence of disorder lies in the universality class of (d + 1) XY model. In the end, we give a schematic U V phase diagram for our system. Chapter-6 : We studied the bilayer attractive Hubbard model in different lattice geometry, the bilayer honeycomb lattice, both in presence and in absence of the on-site random disorder. We discussed how the pair-pair and density-density cor-relations behave in the presence and absence of disorder. Through the finite-size scaling analysis we see the co-existence of the super fluid and the charge density wave order at half- lling. An in nitesimal disorder destroys the CDW order com-pletely while the super uid phase found to be robust against weak-disorder. We estimated the critical interaction strength, the critical temperature and the critical disorder strength through nite-size scaling, and provide a putative phase diagram for the system considered.
165

Thermodynamics of strongly interacting bosons on a lattice : new insights and numerical approaches / Thermodynamique des bosons fortement interagissants : nouveaux résultats et approches numériques

Malpetti, Daniele 16 December 2016 (has links)
Les atomes froids dans les réseaux optiques permettent d'avoir un contrôle sans précédent des états a N-corps fortement corrélés. Pour cette raison, ils représentent un excellent outil pour l'implémentation d'un « simulateur quantique », utile pour réaliser de manière expérimentale de nombreux hamiltoniens de systèmes d'intérêt physique. En particulier, ils rendent possible la création de champs de jauge artificiels; ces derniers permettant d'accéder à la physique du magnétisme frustré. Dans ce travail, il s'agit de s'intéresser à la thermodynamique des atomes froids, en abordant ce sujet de manière théorique et numérique. A ce jour, le Monte Carlo quantique est la méthode la plus efficace dans ce domaine. Néanmoins, en raison de ce qu'on appelle le « problème du signe », elle ne peut s'appliquer qu'à une classe restreinte de systèmes, et dont par exemple les systèmes frustrés ne font pas partie. L'intérêt de cette thèse est de développer une nouvelle méthode approximée fondée sur une approche Monte Carlo. La première partie de cette thèse est consacrée à des considérations de nature théorique sur la structure spatiale des corrélations classiques et quantiques. Ces résultats nous permettent de développer, dans une deuxième partie, une approximation nommée « champ moyen quantique ». Celle-ci permet de proposer, dans une troisième partie, une méthode numérique qu'on appelle « Monte Carlo du champ auxiliaire » et qu'on applique à des cas d'intérêt physique, notamment au réseau triangulaire frustré. / Cold atoms in optical lattices offer unprecedented control over strongly correlatedmany-body states. For this reason they represent an excellent tool for the implementation ofa “quantum simulator”, which can be used to realize experimentally several Hamiltonians ofsystems of physical interest. In particular, they enable the engineering of artificial gaugefields, which gives access to the physics of frustrated magnetism. In this work, we study thethermodynamics of cold atoms both from a theoretical and a numerical point of view. Atpresent days, the most effective method used in this field is the quantum Monte Carlo. Butbecause of the so-called “sign problem” it can only be applied to a limited class of systems,which for example do not include frustrated systems. The interest of this thesis is to developof a new approximated method based on a Monte Carlo approach. The first part of this workis dedicated to theoretical considerations concerning the spatial structure of quantum andclassical correlations. These results permit to develop, in the second part, an approximationcalled quantum mean-field. This latter allows to propose, in the third part, a numericalmethod that we call “auxiliary-field Monte Carlo” and that we apply to some systems ofphysical interest, among which the frustrated triangular lattice.
166

Condensation de Bose-Einstein multiple dans les modes d’ordre supérieurs d’une cavité optique bi-fréquence / Multiple Bose-Einstein condensation in higher order modes of a dual frequency optical cavity

Kuyumjyan, Grigor 11 December 2017 (has links)
Les gaz quantiques dégénérés des atomes neutres sont d’excellentssystèmes avec les applications importantes dans les études de la physique à plusieurs corps, de la matière condensée, de la mesure de haute précision et de l'information quantique. Dans cette thèse, nous démontrons la production des condensats de Bose-Einstein de 87Rb dans les différents modes transverses de la cavité qui a une configuration en papillon (bow-tie cavity). La cavité est résonante à deux longueurs d'onde, 1560 nm et 780 nm. Nous utilisons la radiation à 1560 nm, une longueur d'onde accessible dans la télécommunication (bande C) pour obtenir le condensat de Bose-Einstein dans un piège dipolaire intra-cavité. La cavité optique permet de réaliser un piège dipolaire profond à partir d'une source optique à puissance modérée (3W), grâce à l'amplification de la puissance au sein du résonateur. Les modes non dégénérés du résonateur permettent d'obtenir de multiples condensats dans les modes transverses supérieurs. Comme exemples représentatifs, nous avons réalisé le condensat de Bose-Einstein dans le mode fondamental et le mode TEM01 de la cavité. L'utilisation de ces modes nous permet d'avoir un et deux puits de potentiels pour le piégeage où l'échantillon atomique ultra-froid est couplé au mode du résonateur. En contrôlant la puissance relative entre le mode fondamental et les modes transverses supérieurs (TEM01, TEM10), nous arrivons à réaliser la division et la recombinaison d’un 'ensemble atomique ultra-froid. De plus, dans ce manuscrit nous présentons le développementd'un système d'asservissement autour de la cavité optique qui nous permet d'obtenir les deux radiations asservies sur le résonateur ainsi que la stabilisation de la longueur de la cavité sur les atomes de rubidium. La deuxième longueur d'onde provient du faisceau à 1560 nm après le doublage de fréquence. Par la suite, les deux longueurs d'onde sont asservies sur la cavité par la technique de Pound-Drever-Hall. Une partie du composant doublé en fréquence est comparée en fréquence avec un laser à 780 nm asservi sur les atomes de rubidium par la technique de battement optique. Ensuite, le signal de battement est converti par un synthétiseur de fréquence et est envoyé vers le contrôleur de transducteur piézo-électrique de la cavité via un régulateur PI pour éviter la dérive à long terme liée aux fluctuations de la température. La résonance à 780 nm sera utilisée comme faisceau de sonde intra-cavité. Cela nous permettra de réaliser une mesure quantique non-destructive et de générer des états comprimés de spins induits par cette mesure / Quantum degenerate gases of neutral atoms are excellent systems with important applications in the study of many body quantum physics, condensed matter physics, precision measurements, and quantum information processing. In this thesis we demonstrate the creation of 87Rb Bose-Einstein condensates (BECs) in different transverse modes of a bow-tie cavity. The cavity resonant at two wavelengths, 1560 and 780 nm. We are using the radiation 1560 nm accessible in telecom (C band) to create BEC in the cavity enhanced optical dipole trap with only 3 W of optical power from the source. The non-degenerate cavity modes enable the creation of arrays of BECs in the higher transverse modes. As representative examples we realize the BEC in the fundamental TEM00 and the TEM01 mode of the cavity which are the single well and double well trapping configuration with ultra-cold atomic simple well coupled to the cavity modes. By controlling the relative power between the fundamental and the higher transverses cavity modes (TEM01, TEM10), splitting and merging of ultra-cold atomic ensemble is shown. Moreover, in this manuscript we present the development of a lock system around the optical cavity which allows us to obtain both radiations locked to the cavity as well as the lengthe of the optical resonator is referenced on the rubidium atoms. The second wavelength is derived from 1560 nm beam by frequency doubling and then both radiations are locked to the cavity by Pound-Drever-Hall technique. One part of the frequency doubled 780 nm is referenced to an independent 780 nm laser locked on the rubidium atoms. The beat signal between these two lasers is frequency synthesized and through the PI controller is sent to the piezo-electric transducer driver to avoid long-term drifts of the cavity due to temperature fluctuations. The cavity resonance at 780 nm will be used as a probe beam for cavity aided quantum non-demolition measurements to generate measurement induced spin squeezed states.
167

Cold atom quantum simulation of topological phases of matter

Dauphin, Alexandre 12 June 2015 (has links)
L'étude des phases de la matière est d'un intérêt fondamental en physique. La théorie de Landau, qui est le "modèle standard" des transitions de phases, caractérise les phases de la matière en termes des brisures de symétrie, décrites par un paramètre d'ordre local. Cette théorie a permis la description de phénomènes remarquables tels que la condensation de Bose-Einstein, la supraconductivité et la superfluidité.<p><p>Il existe cependant des phases qui échappent à la description de Landau. Il s'agit des phases quantiques topologiques. Celles-ci constituent un nouveau paradigme et sont caractérisées par un ordre global défini par un invariant topologique. Ce dernier classe les objets ou systèmes de la manière suivante: deux objets appartiennent à la même classe topologique s'il est possible de déformer continument le premier objet en le second. Cette propriété globale rend le système robuste contre des perturbations locales telles que le désordre. <p><p>Les atomes froids constituent une plateforme idéale pour simuler les phases quantiques topologiques. Depuis l'invention du laser, les progrès en physique atomique et moléculaire ont permis un contrôle de la dynamique et des états internes des atomes. La réalisation de gaz quantiques,tels que les condensats de Bose-Einstein et les gaz dégénérés de Fermi, ainsi que la réalisation de réseaux optiques à l'aide de faisceaux lasers, permettent d'étudier ces nouvelles phases de la matière et de simuler aussi la physique du solide cristallin.<p><p>Dans cette thèse, nous nous concentrons sur l'etude d'isolants topologiques avec des atomes froids. Ces derniers sont isolants de volume mais possèdent des états de surface qui sont conducteurs, protégés par un invariant topologique. Nous traitons trois sujets principaux. Le premier sujet concerne la génération dynamique d'un isolant topologique de Mott. Ici, les interactions engendrent l'isolant topologique et ce, sans champ de jauge de fond. Le second sujet concerne la détection des isolants topologiques dans les expériences d'atomes froids. Nous proposons deux méthodes complémentaires pour caractériser celles-ci. Finalement, le troisième sujet aborde des thèmes au-delà de la définition standard d'isolant topologique. Nous avons d'une part proposé un algorithme efficace pour calculer la conductivité de Berry, la contribution topologique à la conductivité transverse lorsque l'énergie de Fermi se trouve dans une bande d'énergie. D'autre part, nous avons utilisé des méthodes pour caractériser les propriétés quantiques topologiques de systèmes non-périodiques.<p><p>L'étude des isolants topologiques dans les expériences d'atomes froids est un sujet de recherche récent et en pleine expansion. Dans ce contexte, cette thèse apporte plusieurs contributions théoriques pour la simulation de systèmes quantiques sur réseau avec des atomes froids. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
168

Quantum transport and phase transitions in lattices subjected to external gauge fields

Goldman, Nathan 11 May 2009 (has links)
The first and main part of this thesis concerns the quantization of the transverse transport in diverse periodic quantum systems. From a theoretical point of view, the Hall conductivity's quantization may be understood at the single-particle level in terms of topological invariants. In periodic media such as crystals, the single-particle energy spectrum depicts a specific band structure. A modern approach, based on topology and differential geometry, consists in assigning an abstract mathematical object, a fibre bundle, to each energy band. The fibre bundle's topology is measured by a topological invariant, called the Chern number, which only takes integral values. Surprisingly, the transverse conductivity can be expressed as a sum of Chern numbers. In this work, one provides a rigorous derivation of this fact and one presents several methods which allow the numerical and analytical computation of the Chern numbers for diverse systems. <p><p>The first original study concerns the physics of ultracold atoms trapped in optical lattices. These very popular experimental setups, which are currently designed in several laboratories worldwide, allow for the exploration of fundamental problems encountered in modern physics. In particular atoms trapped in optical lattices reproduce with a very high accuracy the physics of the Hubbard-type models which describe a huge variety of condensed <p>matter phenomena, such as high-Tc superconductivity and the Mott quantum phase transition. Particularly interesting is the possibility to create artificial magnetic fields in optical lattices. Generated by complex laser configurations or by rotation of the trap, these artificial fields allow the simulation of electronic systems subjected to intense magnetic fields. In this thesis, one explores the possibility of a quantum Hall-like effect for neutral particles in such arrangements. In particular one focuses on the exotic situation in which non-Abelian gauge potentials are generated in the system. In these interesting arrangements, the atomic hoppings are assisted by external lasers and are described by non-commutating translation operators. The non-Abelian fields which are generated in these systems are well known in high-energy physics, where they play a key role in modern theories of fundamental interactions. <p>Thereafter, our study of the IQHE in periodic systems concerns quantum graphs. These models which describe the propagation of a quantum wave within an arbitrary complex object are extremely versatile and hence allow the study of various interesting quantum phenomena. Quantum graphs appear in diverse fields such as solid state physics, quantum chemistry, quantum chaology and wave physics. On the other hand, in the context of quantum chaology, graphs have been the vehicle to confirm important conjectures about chaos signatures. In this thesis, one studies the spectral and chaological properties of infinite rectangular quantum graphs in the presence of a magnetic field. One then establishes the quantization of the Hall transverse conductivity for these systems.<p><p>The second part of the thesis is devoted to the physics of interacting atoms trapped in optical lattices and subjected to artificial gauge potentials. One explores the Mott quantum phase transition in both bosonic and fermionic optical lattices subjected to such fields. The optical lattices are described through the Hubbard model in which the dynamics is ruled by two competing parameters: the interaction strength U and the tunneling amplitude t. The Mott phase is characterized by a commensurate filling of the lattice and is reached by increasing the ration U/t, which can be easily achieved experimentally by varying the depth of the optical potential. In this thesis one studies how this quantum phase transition is modified when the optical lattice is subjected to diverse artificial gauge potentials. <p><p>Moreover, one shows that vortices are created in bosonic optical lattices in the vicinity of the Mott regime. The vortices are topological defects in the macroscopic wave function that describes the superfluid. One comments on the vortex patterns that are observed for several configurations of the gauge potential. <p><p>%%%%%%%%%%%%%%%%%%%%%<p>%%%%%%%%%%%%%%%%%%%%%<p>%%%%%%%%%%%%%%%%%%%%%<p><p><p>La physique statistique quantique prédit l’émergence de propriétés remarquables lorsque la matière est soumise à des conditions extrêmes de basses températures. Aujourd’hui ces nouvelles phases de la matière jouent un rôle fondamental pour les technologies actuelles et ainsi méritent d’être étudiées sur le plan théorique. <p><p>Dans le cadre de ma thèse, j’ai étudié l’effet Hall quantique qui se manifeste dans des systèmes bidimensionnels ultra froids et soumis à des champs magnétiques intenses. Cet effet remarquable se manifeste par la quantification parfaite d’un coefficient de transport appelé conductivité de Hall. Cette grandeur physique évolue alors sur divers plateaux qui correspondent à des valeurs entières d’une constante fondamentale de la nature. D’un point de vue théorique, cette quantification peut être approchée par la théorie des espaces fibrés qui permet d’exprimer la conductivité de Hall en termes d’invariants topologiques. <p><p>Nous explorons l'effet Hall quantique pour différents systèmes en nous appuyant sur l’interprétation topologique de la quantification de la conductivité de Hall. Nous démontrons ainsi que l’effet Hall quantique se manifeste aussi bien dans les métaux que dans les graphes quantiques et les réseaux optiques. Les graphes quantiques sont des modèles permettant l’étude du transport dans des circuits fins, alors que les réseaux optiques sont des dispositifs actuellement réalisés en laboratoire qui piègent des atomes froids de façon périodique. Considérant différents champs magnétiques externes et variant la géométrie des systèmes, nous montrons que cet effet subit des modifications remarquables. Notamment, l’effet Hall quantique est représenté par des diagrammes des phases impressionnants :les multiples phases correspondant à la valeur entière de la conductivité de Hall se répartissent alors dans des structures fractales. De plus, ces diagrammes des phases se révèlent caractéristiques des différents systèmes étudiés. <p><p>D’autre part, nous étudions la transition quantique de Mott dans les réseaux optiques. En augmentant l’interaction entre les particules, le système devient isolant et se caractérise par le remplissage homogène du réseau. Nous étudions également l’apparition de tourbillons quantiques lorsque le système est soumis à un champ magnétique au voisinage de la phase isolante. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
169

Accéléromètre atomique double espèce 87Rb/39K aéroporté pour un test du principe d’équivalence / An airborne, dual species atom interferometer 87Rb/39K for an Equivalence Principle test

Gominet, Pierre alain 26 January 2015 (has links)
Lors de ces vingt dernières années, de nouvelles techniques de refroidissement et de manipulation des atomes ont permis le développement de senseurs inertiels basés sur l’interférométrie atomique. Le projet ICE est un interféromètre atomique double espèce qui a pour objectif de tester le principe d’équivalence faible. Afin d’augmenter la sensibilité de l’instrument, l’expérience est réalisée en micro-gravité lors de vols paraboliques à borde l’Airbus A300 zero-g de Novespace. L’interféromètre est composé de deux espèces atomiques (87Rb et 39K) ayant des transitions atomiques très proches (780 et 767nm). Ces longueurs d’ondes sont générées par une source laser bi-fréquence ultra-stable. Issue des technologies telecom et ensuite doublées en fréquence, elle est capable de résister aux contraintes des vols paraboliques. Précédemment, des mesures d’accélérations furent réalisées par un interféromètre Rubidiumen 1g et 0g en vol. Récemment, à l’aide d’un nouveau dispositif expérimental reposant sur une nouvelle enceinte à vide en titane, nous avons réalisé un des premiers accéléromètres Potassium. Cet atome présente en effet certaines difficultés à refroidir et à manipuler et demande un excellent contrôle des différents paramètres expérimentaux.Je présente ainsi dans ce manuscrit, les résultats obtenus avec le Rubidium et le Potassium sur le nouveau dispositif expérimental, et les récents progrès réalisés en vue d’un accéléromètre double espèce Rb/K. / During the last two decades, new techniques to cool and manipulate atoms has enabled the development of inertial sensors based on atom interferometry. The ICE project aims to verify the weak equivalence principle (WEP) using a compact and transportable dual-species atom interferometer. To make precise tests of the WEP, this experiment is performed in a micro-gravity environment during parabolic flights onboard the Novespace zero-g aircraft. The interferometer is composed of two atomic species (87Rb et 39K) with similar transition wavelengths (780 nm and 767 nm), which are derived from frequency-doubled telecom lasers. This ultra-stable laser source is able to withst and the parabolic flight and their rough conditions.In previous work, we have demonstrated measurements from a cold rubidium interferometer during the 1g and 0g phases during flights. Recently, we manage to carry out one of the first gravimeter with 39K in a new titanium vacuum system. This is a huge achievement because this atom is hard to cool down and to manipulate. I will present in this thesis, the results with Rubidium and Potassium on the newset-up, I we will report on recent progress toward a double species 87Rb/39K interferometer.
170

Thermodynamique de la réponse électrique dans les isolants de bande - Synchronisation et écho de spin dans une horloge atomique / Thermodynamics of the electrical response in band insulators - Synchronisation and spin-echo in cold atom gases

Combes, Frédéric 07 December 2018 (has links)
Le travail présenté dans ce manuscrit porte sur deux sujets distincts. Le premier concerne la réponse d'un diélectrique cristallin à un champ électrique uniforme ; il s'ancre sur la théorie moderne de la polarisation développée par King-Smith, Vanderbilt et Resta. En nous restreignant d'abord au cas unidimensionnel, nous décrivons de manière perturbative à faible champ électrique le spectre de Wannier-Stark d'un modèle de bande. Nous utilisons ensuite ce développement dans une approche thermodynamique que nous modifions pour palier aux problèmes posés par le caractère non-borné du spectre de Wannier-Stark : nous introduisons en particulier un potentiel chimique local assurant la neutralité électrique locale au sein du cristal. Cette approche permet d'accéder à la polarisation et à la susceptibilité électrique des cristaux diélectriques. Finalement, nous étendons le travail effectué au cas bidimensionnel où de nouvelles caractéristiques associé aux isolants topologiques apparaissent.Le deuxième sujet porte sur la synchronisation de spin dans les gaz d'atomes froids. Nous étudions la compétition entre le mécanisme d'écho de spin et le phénomène d'auto-synchronisation lié à l'effet de rotation des spins identiques (emph{ISRE}). La méthode de l'écho de spin permet de compenser certains déphasage apparaissant dans une gaz d'atomes ultra-froid piégé, et accroît ainsi le temps de cohérence de l'ensemble. L'emph{ISRE} apparaît dans les gaz denses via les collisions entre atomes et conduit également à un accroissement du temps de cohérence. Nous montrons que ces deux mécanismes ne sont pas systématiquement compatibles. En particulier, leur compatibilité est lié à la relation entre les échelles de temps propres à chacun des phénomènes. / The work exposed in this manuscript covers two distinct topics. The first is about the response of crystalline dielectrics to an external static electric field; it is based on King-Smith, Vanderbilt and Resta modern theory of polarisation. Restricting ourselves to the 1D case, we first describe the Wannier-Stark ladder of a band model with a low-field perturbative approach. We then use this development to derive the thermodynamical response of the band model. We have to modify the usual thermodynamics to account for the unboundedness of the Wannier-Stark spectrum, through the introduction of a local chemical potentiel which ensures local electric neutrality in the crystal. In a last step, we extend our approch to the 2D cas, where new characteristics related to the topic of topological insulators appear.The second topic tackles synchronization and spin-echo in cold atom gases. We study the competition between the spin-echo mechanism and the self-synchronization mechanism which emerges from the identical spin rotation effet (emph{ISRE}). The spin-echo thechnique was built to compensate for some the of dephasing that appears in trapped ultra-cold gases, leading to an increased coherence time for the ensemble. The emph{ISRE} appears in dense atomic clouds where collisions also lead to an increased coherence time. We show that these two mechanism are not always compatible, in particular, their compatibility is based on the relation between the time scales associated to both phenomena.

Page generated in 0.0576 seconds