• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 14
  • 12
  • 1
  • Tagged with
  • 56
  • 19
  • 16
  • 14
  • 13
  • 10
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of logic to finite combinatorics

Compton, Kevin Jay. January 1980 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1980. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 118-120).
2

Lexically specified derivational control in combinatory categorial grammar

Baldridge, Jason January 2002 (has links)
This dissertation elaborates several refinements to the Combinatory Categorial Grammar (CCG) framework which are motivated by phenomena in parametrically diverse languages such as English, Dutch, Tagalog, Toba Batak and Turkish. I present Multi-Modal Combinatory Categorial Grammar, a formulation of CCG which incorporates devices and category constructors from related categorical frameworks and demonstrate the effectiveness of these modifications both for providing parsimonious linguistic analyses and for improving the representation of the lexicon and computational processing. Altogether, this dissertation provides many formal, linguistic, and computational justifications for the central thesis that this dissertation puts forth- that an explanatory theory of natural language grammar can be based on a categorial grammar formalism which allows cross-linguistic variation only in the lexicon and has computationally attractive properties.
3

Some extensional term models for combinatory logics and [lambda]-calculi

Barendregt, H. P. January 1971 (has links)
Thesis (doctoral)--Rijksuniversiteit te Utrecht, 1971. / "Stellingen" ([2] p.) inserted. Summary in Dutch. Includes supplementary part II to the author's thesis. Includes bibliographical references (p. 134-138).
4

Some extensional term models for combinatory logics and [lambda]-calculi

Barendregt, H. P. January 1971 (has links)
Thesis (doctoral)--Rijksuniversiteit te Utrecht, 1971. / "Stellingen" ([2] p.) inserted. Summary in Dutch. Includes supplementary part II to the author's thesis. Includes bibliographical references (p. 134-138).
5

An inheritance-based theory of the lexicon in combinatory categorial grammar

McConville, Mark January 2008 (has links)
This thesis proposes an extended version of the Combinatory Categorial Grammar (CCG) formalism, with the following features: 1. grammars incorporate inheritance hierarchies of lexical types, defined over a simple, feature-based constraint language 2. CCG lexicons are, or at least can be, functions from forms to these lexical types This formalism, which I refer to as ‘inheritance-driven’ CCG (I-CCG), is conceptualised as a partially model-theoretic system, involving a distinction between category descriptions and their underlying category models, with these two notions being related by logical satisfaction. I argue that the I-CCG formalism retains all the advantages of both the core CCG framework and proposed generalisations involving such things as multiset categories, unary modalities or typed feature structures. In addition, I-CCG: 1. provides non-redundant lexicons for human languages 2. captures a range of well-known implicational word order universals in terms of an acquisition-based preference for shorter grammars This thesis proceeds as follows: Chapter 2 introduces the ‘baseline’ CCG formalism, which incorporates just the essential elements of category notation, without any of the proposed extensions. Chapter 3 reviews parts of the CCG literature dealing with linguistic competence in its most general sense, showing how the formalism predicts a number of language universals in terms of either its restricted generative capacity or the prioritisation of simpler lexicons. Chapter 4 analyses the first motivation for generalising the baseline category notation, demonstrating how certain fairly simple implicational word order universals are not formally predicted by baseline CCG, although they intuitively do involve considerations of grammatical economy. Chapter 5 examines the second motivation underlying many of the customised CCG category notations — to reduce lexical redundancy, thus allowing for the construction of lexicons which assign (each sense of) open class words and morphemes to no more than one lexical category, itself denoted by a non-composite lexical type. Chapter 6 defines the I-CCG formalism, incorporating into the notion of a CCG grammar both a type hierarchy of saturated category symbols and an inheritance hierarchy of constrained lexical types. The constraint language is a simple, feature-based, highly underspecified notation, interpreted against an underlying notion of category models — this latter point is crucial, since it allows us to abstract away from any particular inference procedure and focus on the category notation itself. I argue that the partially model-theoretic I-CCG formalism solves the lexical redundancy problem fairly definitively, thereby subsuming all the other proposed variant category notations. Chapter 7 demonstrates that the I-CCG formalism also provides the beginnings of a theory of the CCG lexicon in a stronger sense — with just a small number of substantive assumptions about types, it can be shown to formally predict many implicational word order universals in terms of an acquisition-based preference for simpler lexical inheritance hierarchies, i.e. those with fewer types and fewer constraints. Chapter 8 concludes the thesis.
6

A new program for combinatory reduction and abstraction

Deshpande, Sushant, University of Lethbridge. Faculty of Arts and Science January 2009 (has links)
Even though lambda calculus (λ-calculus) and combinatory logic (CL) appear to be equivalent, they are not. As yet we do not have a reduction in CL which corresponds to β-reduction in λ-calculus. There are three proposals but they all have few problems one of which is the lack of a complete characterization of CL-terms corresponding to λ-terms in β-normal form. Finding such a characterization for any of the three proposals appears to require a lot of examples which are tedious and time consuming to develop by hand. For this reason, a computer program to do reductions and abstractions of CL-terms would be useful. This thesis is about an attempt to write such a program. The program that we have does not yet work for the three proposals but it works for βη-strong reduction. Coding this program turned out to be much harder than anticipated. Dr. Robin Cockett developed a semantic translation which helped in coding the program but his semantic translation needs to be extended to all three proposals to obtain the program originally desired and that needs a lot of research. / v, 96 leaves ; 29 cm
7

A Type System For Combinatory Categorial Grammar

Erkan, Gunes 01 January 2003 (has links) (PDF)
This thesis investigates the internal structure and the computational representation of the lexical entries in Combinatory Categorial Grammar (CCG). A restricted form of typed feature structures is proposed for representing CCG categories. This proposal is combined with a constraint-based modality system for basic categories of CCG. We present some linguistic evidence to explain why both a unication-based feature system and a constraint-based modality system are needed for a lexicalist framework. An implementation of our system is also presented.
8

Harmonic analysis of music using combinatory categorial grammar

Granroth-Wilding, Mark Thomas January 2013 (has links)
Various patterns of the organization of Western tonal music exhibit hierarchical structure, among them the harmonic progressions underlying melodies and the metre underlying rhythmic patterns. Recognizing these structures is an important part of unconscious human cognitive processing of music. Since the prosody and syntax of natural languages are commonly analysed with similar hierarchical structures, it is reasonable to expect that the techniques used to identify these structures automatically in natural language might also be applied to the automatic interpretation of music. In natural language processing (NLP), analysing the syntactic structure of a sentence is prerequisite to semantic interpretation. The analysis is made difficult by the high degree of ambiguity in even moderately long sentences. In music, a similar sort of structural analysis, with a similar degree of ambiguity, is fundamental to tasks such as key identification and score transcription. These and other tasks depend on harmonic and rhythmic analyses. There is a long history of applying linguistic analysis techniques to musical analysis. In recent years, statistical modelling, in particular in the form of probabilistic models, has become ubiquitous in NLP for large-scale practical analysis of language. The focus of the present work is the application of statistical parsing to automatic harmonic analysis of music. This thesis demonstrates that statistical parsing techniques, adapted from NLP with little modification, can be successfully applied to recovering the harmonic structure underlying music. It shows first how a type of formal grammar based on one used for linguistic syntactic processing, Combinatory Categorial Grammar (CCG), can be used to analyse the hierarchical structure of chord sequences. I introduce a formal language similar to first-order predicate logical to express the hierarchical tonal harmonic relationships between chords. The syntactic grammar formalism then serves as a mechanism to map an unstructured chord sequence onto its structured analysis. In NLP, the high degree of ambiguity of the analysis means that a parser must consider a huge number of possible structures. Chart parsing provides an efficient mechanism to explore them. Statistical models allow the parser to use information about structures seen before in a training corpus to eliminate improbable interpretations early on in the process and to rank the final analyses by plausibility. To apply the same techniques to harmonic analysis of chord sequences, a corpus of tonal jazz chord sequences annotated by hand with harmonic analyses is constructed. Two statistical parsing techniques are adapted to the present task and evaluated on their success at recovering the annotated structures. The experiments show that parsing using a statistical model of syntactic derivations is more successful than a Markovian baseline model at recovering harmonic structure. In addition, the practical technique of statistical supertagging serves to speed up parsing without any loss in accuracy. This approach to recovering harmonic structure can be extended to the analysis of performance data symbolically represented as notes. Experiments using some simple proof-of-concept extensions of the above parsing models demonstrate one probabilistic approach to this. The results reported provide a baseline for future work on the task of harmonic analysis of performances.
9

Information structure in discourse

Traat, Maarika January 2006 (has links)
The present dissertation proposes integrating Discourse Representation Theory (DRT), information structure (IS) and Combinatory Categorial Grammar (CCG) into a single framework. It achieves this by making two new contributions to computational treatment of information structure. First, it presents an uncomplicated approach to incorporating information structure in DRT. Second, it shows how the new DRT representation can be integrated into a unification-based grammar framework in a straightforward manner. We foresee the main application of the new formalism to be in spoken language systems: the approach presented here has the potential to considerably facilitate spoken language systems benefiting from insights derived from information structure. The DRT representation with information structure which is proposed in this dissertation is simpler than the previous attempts to include information structure in DRT. We believe that the simplicity of the Information-Structure-marked Discourse Representation Structure (IS-DRS) is precisely what makes it attractive and easy to use for practical tasks like determining the intonation in spoken language applications. The IS component in ISDRS covers a range of aspects of information structural semantics. A further advantage of IS-DRS is that in its case a single semantic representation is suitable for both the generation of context-appropriate prosody and automatic reasoning. A semantic representation on its own is useful for describing and analysing a language. However, it is of even greater utility if it is accompanied by a mechanism that allows one to directly infer the semantic representation from a natural language expression. We incorporated the IS-DRS into the Categorial Grammar (CG) framework, developing a unification based realisation of Combinatory Categorial Grammar, which we call Unification-based Combinatory Categorial Grammar (UCCG). UCCG inherits elements from Combinatory Categorial Grammar and Unification Categorial Grammar. The UCCG framework is developed gradually throughout the dissertation. The information structural component is included as the final step. The IS-DRSs for linguistic expressions are built up compositionally from the IS-DRSs of their sub-expressions. Feature unification is the driving force in this process. The formalism is illustrated by numerous examples which are characterised by different levels of syntactic complexity and diverse information structure. We believe that the main assets of both the IS-DRSs as well as the Unification-based Combinatory Categorial Grammar framework are their simplicity, transparency, and inherent suitability for computational implementation. This makes them an appealing choice for use in practical applications like spoken language systems.
10

Power estimation for combinational logic and low power design /

Kim, Dongho. January 2001 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2001. / Vita. Includes bibliographical references (leaves 99-104). Available also in a digital version from Dissertation Abstracts.

Page generated in 0.0477 seconds