• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 13
  • 13
  • 11
  • 11
  • 10
  • 9
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Independent Domination in Complementary Prisms

Góngora, Joel A., Haynes, Teresa W., Jum, Ernest 01 July 2013 (has links)
The complementary prism of a graph G is the graph formed from a disjoint union of G and its complement ̄G by adding the edges of a perfect matching between the corresponding vertices of G and G. We study independent domination numbers of complementary prisms. Exact values are determined for complementary prisms of paths, complete bipartite graphs, and subdivided stars. A natural lower bound on the independent domination number of a complementary prism is given, and graphs attaining this bound axe characterized. Then we show that the independent domination number behaves somewhat differently in complementary prisms than the domination and total domination numbers. We conclude with a sharp upper bound.
2

Independent Domination in Complementary Prisms

Góngora, Joel A., Haynes, Teresa W., Jum, Ernest 01 July 2013 (has links)
The complementary prism of a graph G is the graph formed from a disjoint union of G and its complement ̄G by adding the edges of a perfect matching between the corresponding vertices of G and G. We study independent domination numbers of complementary prisms. Exact values are determined for complementary prisms of paths, complete bipartite graphs, and subdivided stars. A natural lower bound on the independent domination number of a complementary prism is given, and graphs attaining this bound axe characterized. Then we show that the independent domination number behaves somewhat differently in complementary prisms than the domination and total domination numbers. We conclude with a sharp upper bound.
3

Domination and Total Domination in Complementary Prisms

Haynes, Teresa W., Henning, Michael A., Van Der Merwe, Lucas C. 01 July 2009 (has links)
Let G be a graph and Ḡ be the complement of G. The complementary prism GḠ of G is the graph formed from the disjoint union of G and Ḡ by adding the edges of a perfect matching between the corresponding vertices of G and Ḡ. For example, if G is a 5-cycle, then GḠ is the Petersen graph. In this paper we consider domination and total domination numbers of complementary prisms. For any graph G, max {γ(G), γ(Ḡ)} ≤ γ (Ḡ)and max {γt(G), γt(Ḡ)} ≤ γt (Gγ), where γ(G) and γt(G) denote the domination and total domination numbers of G, respectively. Among other results, we characterize the graphs G attaining these lower bounds.
4

Roman Domination in Complementary Prisms

Alhashim, Alawi I 01 May 2017 (has links)
The complementary prism GG of a graph G is formed from the disjoint union of G and its complement G by adding the edges of a perfect match- ing between the corresponding vertices of G and G. A Roman dominating function on a graph G = (V,E) is a labeling f : V(G) → {0,1,2} such that every vertex with label 0 is adjacent to a vertex with label 2. The Roman domination number γR(G) of G is the minimum f(V ) = Σv∈V f(v) over all such functions of G. We study the Roman domination number of complementary prisms. Our main results show that γR(GG) takes on a limited number of values in terms of the domination number of GG and the Roman domination numbers of G and G.
5

Double Domination in Complementary Prisms

Desormeaux, Wyatt J., Haynes, Teresa W., Vaughan, Lamont 01 July 2013 (has links)
The complementary prism GḠ of a graph G is formed from the disjoint union of G and its complement Ḡ by adding the edges of a perfect matching between the corresponding vertices of G and Ḡ. A set S ⊆ V(G) is a double dominating set of G if for every v ∈ V(G)\S, v is adjacent to at least two vertices of S, and for every w ∈ S, w is adjacent to at least one vertex of S. The double domination number of G is the minimum cardinality of a double dominating set of G. We begin by determining the double domination number of complementary prisms of paths and cycles. Then we characterize the graphs G whose complementary prisms have small double domination numbers. Finally, we establish lower and upper bounds on the double domination number of GḠ and show that all values between these bounds are attainable.
6

Double Domination in Complementary Prisms

Desormeaux, Wyatt J., Haynes, Teresa W., Vaughan, Lamont 01 July 2013 (has links)
The complementary prism GḠ of a graph G is formed from the disjoint union of G and its complement Ḡ by adding the edges of a perfect matching between the corresponding vertices of G and Ḡ. A set S ⊆ V(G) is a double dominating set of G if for every v ∈ V(G)\S, v is adjacent to at least two vertices of S, and for every w ∈ S, w is adjacent to at least one vertex of S. The double domination number of G is the minimum cardinality of a double dominating set of G. We begin by determining the double domination number of complementary prisms of paths and cycles. Then we characterize the graphs G whose complementary prisms have small double domination numbers. Finally, we establish lower and upper bounds on the double domination number of GḠ and show that all values between these bounds are attainable.
7

Restrained Domination in Complementary Prisms

Desormeaux, Wyatt J., Haynes, Teresa W. 01 November 2011 (has links)
The complementary prism GḠ of a graph G is formed from the disjoint union of G and its complement G by adding the edges of a perfect matching between the corresponding vertices of G and Ḡ. A set S ⊆ V(G) is a restrained dominating set of G if for every v € V(G) \S, v is adjacent to a vertex in S and a vertex in V(G) \S. The restrained domination number of G is the minimum cardinality of a restrained dominating set of G. We study restrained domination of complementary prisms. In particular, we establish lower and upper bounds on the restrained domination number of GḠ, show that the restrained domination number can be attained for all values between these bounds, and characterize the graphs which attain the lower bound.
8

Independent Domination in Complementary Prisms.

Gongora, Joel Agustin 19 August 2009 (has links) (PDF)
Let G be a graph and G̅ be the complement of G. The complementary prism GG̅ of G is the graph formed from the disjoint union of G and G̅ by adding the edges of a perfect matching between the corresponding vertices of G and G̅. For example, if G is a 5-cycle, then GG̅ is the Petersen graph. In this paper we investigate independent domination in complementary prisms.
9

Double Domination of Complementary Prisms.

Vaughan, Lamont D 12 August 2008 (has links) (PDF)
The complementary prism of a graph G is obtained from a copy of G and its complement G̅ by adding a perfect matching between the corresponding vertices of G and G̅. For any graph G, a set D ⊆ V (G) is a double dominating set (DDS) if that set dominates every vertex of G twice. The double domination number, denoted γ×2(G), is the cardinality of a minimum double dominating set of G. We have proven results on graphs of small order, specific families and lower bounds on γ×2(GG̅).
10

Italian Domination in Complementary Prisms

Russell, Haley D 01 May 2018 (has links) (PDF)
Let $G$ be any graph and let $\overline{G}$ be its complement. The complementary prism of $G$ is formed from the disjoint union of a graph $G$ and its complement $\overline{G}$ by adding the edges of a perfect matching between the corresponding vertices of $G$ and $\overline{G}$. An Italian dominating function on a graph $G$ is a function such that $f \, : \, V \to \{ 0,1,2 \}$ and for each vertex $v \in V$ for which $f(v)=0$, it holds that $\sum_{u \in N(v)} f(u) \geq 2$. The weight of an Italian dominating function is the value $f(V)=\sum_{u \in V(G)}f(u)$. The minimum weight of all such functions on $G$ is called the Italian domination number. In this thesis we will study Italian domination in complementary prisms. First we will present an error found in one of the references. Then we will define the small values of the Italian domination in complementary prisms, find the value of the Italian domination number in specific families of graphs complementary prisms, and conclude with future problems.

Page generated in 0.0915 seconds