Spelling suggestions: "subject:"computational chemistry."" "subject:"eomputational chemistry.""
231 |
Computational methods for assessing drug-target residence times in bacterial enoyl-ACP reductases and predicting small-molecule permeability for the \(Mycobacterium\) \(tuberculosis\) cell wall / Computermethoden zur Bestimmung von Protein-Ligand Verweilzeiten in bakteriellen Enoyl-ACP Reduktasen und Vorhersage der Permeabilitätswahrscheinlichkeit kleiner Moleküle gegenüber der \(Mycobacterium\) \(tuberculosis\) ZellwandMerget, Benjamin January 2015 (has links) (PDF)
\textbf{Molecular Determinants of Drug-Target Residence Times of Bacterial Enoyl-ACP Reductases.} Whereas optimization processes of early drug discovery campaigns are often affinity-driven, the drug-target residence time $t_R$ should also be considered due to an often strong correlation with \textit{in vivo} efficacy of compounds. However, rational optimization of $t_R$ is not straightforward and generally hampered by the lack of structural information about the transition states of ligand association and dissociation. The enoyl-ACP reductase FabI of the fatty acid synthesis (FAS) type II is an important drug-target in antibiotic research. InhA is the FabI enzyme of \textit{Mycobacterium tuberculosis}, which is known to be inhibited by various compound classes. Slow-onset inhibition of InhA is assumed to be associated with the ordering of the most flexible protein region, the substrate binding loop (SBL). Diphenylethers are one class of InhA inhibitors that can promote such SBL ordering, resulting in long drug-target residence times. Although these inhibitors are energetically and kinetically well characterized, it is still unclear how the structural features of a ligand affect $t_R$.
Using classical molecular dynamics (MD) simulations, recurring conformational families of InhA protein-ligand complexes were detected and structural determinants of drug-target residence time of diphenyl\-ethers with different kinetic profiles were described. This information was used to deduce guidelines for efficacy improvement of InhA inhibitors, including 5'-substitution on the diphenylether B-ring. The validity of this suggestion was then analyzed by means of MD simulations.
Moreover, Steered MD (SMD) simulations were employed to analyze ligand dissociation of diphenylethers from the FabI enzyme of \textit{Staphylococcus aureus}. This approach resulted in a very accurate and quantitative linear regression model of the experimental $ln(t_R)$ of these inhibitors as a function of the calculated maximum free energy change of induced ligand extraction. This model can be used to predict the residence times of new potential inhibitors from crystal structures or valid docking poses.
Since correct structural characterization of the intermediate enzyme-inhibitor state (EI) and the final state (EI*) of two-step slow-onset inhibition is crucial for rational residence time optimization, the current view of the EI and EI* states of InhA was revisited by means of crystal structure analysis, MD and SMD simulations. Overall, the analyses affirmed that the EI* state is a conformation resembling the 2X23 crystal structure (with slow-onset inhibitor \textbf{PT70}), whereas a twist of residues Ile202 and Val203 with a further opened helix $\alpha 6$ corresponds to the EI state. Furthermore, MD simulations emphasized the influence of close contacts to symmetry mates in the SBL region on SBL stability, underlined by the observation that an MD simulation of \textbf{PT155} chain A with chain B' of a symmetry mate in close proximity of the SBL region showed significantly more stable loops, than a simulation of the tetrameric assembly. Closing Part I, SMD simulations were employed which allow the delimitation of slow-onset InhA inhibitors from rapid reversible ligands.
\textbf{Prediction of \textit{Mycobacterium tuberculosis} Cell Wall Permeability.} The cell wall of \textit{M. tuberculosis} hampers antimycobacterial drug design due to its unique composition, providing intrinsic antibiotic resistance against lipophilic and hydrophilic compounds. To assess the druggability space of this pathogen, a large-scale data mining endeavor was conducted, based on multivariate statistical analysis of differences in the physico-chemical composition of a normally distributed drug-like chemical space and a database of antimycobacterial--and thus very likely permeable--compounds. The approach resulted in the logistic regression model MycPermCheck, which is able to predict the permeability probability of small organic molecules based on their physico-chemical properties. Evaluation of MycPermCheck suggests a high predictive power. The model was implemented as a freely accessible online service and as a local stand-alone command-line version.
Methodologies and findings from both parts of this thesis were combined to conduct a virtual screening for antimycobacterial substances. MycPermCheck was employed to screen the chemical permeability space of \textit{M. tuberculosis} from the entire ZINC12 drug-like database. After subsequent filtering steps regarding ADMET properties, InhA was chosen as an exemplary target. Docking to InhA led to a principal hit compound, which was further optimized. The quality of the interaction of selected derivatives with InhA was subsequently evaluated using MD and SMD simulations in terms of protein and ligand stability, as well as maximum free energy change of induced ligand egress. The results of the presented computational experiments suggest that compounds with an indole-3-acethydrazide scaffold might constitute a novel class of InhA inhibitors, worthwhile of further investigation. / \textbf{Molekulare Determinanten von Wirkstoff-Angriffsziel Verweilzeiten bakterieller Enoyl-ACP Reduktasen.} In frühen Phasen der Wirkstoffentwicklung sind Optimierungsprozesse häufig affini\-täts\-geleitet. Darüber hinaus sollte zusätzlich die Wirkstoff-Angriffsziel Verweilzeit $t_R$ berücksichtigt werden, da diese oft eine starke Korrelation zur \textit{in vivo} Wirksamkeit der Substanzen aufweist. Rationale Optimierung von $t_R$ ist jedoch auf Grund eines Mangels an struktureller Information über den Übergangszustand der Ligandbindung und Dissoziierung nicht einfach umsetzbar. Die Enoyl-ACP Reduktase FabI der Fettsäurebio\-synthese (FAS) Typ II ist ein wichtiger Angriffspunkt in der Antibiotikaforschung. InhA ist das FabI Enzym des Organismus \textit{Mycobacterium tuberculosis} und kann durch Substanzen diverser Klassen gehemmt werden. Es wird vermutet, dass Hemmung von InhA durch langsam-bindende (``slow-onset'') Inhibitoren mit der Ordnung der flexibelsten Region des Enzyms assoziiert ist, dem Substratbindungsloop (SBL). Diphenylether sind eine InhA Inhibitorenklasse, die eine solche SBL Ordnung fördern und dadurch lange Verweilzeiten im Angriffsziel aufweisen. Obwohl diese Inhibitoren energetisch und kinetisch gut charakterisiert sind, ist noch immer unklar, wie die strukturellen Eigenschaften eines Liganden $t_R$ beeinflussen.
Durch die Verwendung klassischer Molekulardynamik (MD) Simulationen wurden wiederkehrende Konformationsfamilien von InhA Protein-Ligand Komplexen entdeckt und strukturelle Determinanten der Wirkstoff-Angriffsziel Verweilzeit von Diphenylethern mit verschiedenen kinetischen Profilen beschrieben. Anhand dieser Ergebnisse wurden Richtlinien zur Wirksamkeitsoptimierung von InhA Inhibitoren abgeleitet, einschließlich einer 5'-Substitution am Diphenylether B-Ring. Die Validität dieses Vorschlags wurde mittels MD Simulationen nachfolgend analysiert.
Darüber hinaus wurden ``Steered MD'' (SMD) Simulationen als MD Technik für umfangreicheres Sampling verwendet um die Liganddissoziation von Diphenylethern aus dem FabI Enzym von \textit{Staphylococcus aureus} zu untersuchen. Dieser Ansatz resultierte in einem sehr akkuraten, quantitativen linearen Regressionsmodell der experimentellen Verweilzeit $ln(t_R)$ dieser Inhibitoren als Funktion der berechneten maximalen freien Energieänderung induzierter Ligandextraktion. Dieses Modell kann genutzt werden um die Verweilzeiten neuer potentieller Inhibitoren aus Kristallstrukturen oder validen Dockingposen vorherzusagen.
Die korrekte strukturelle Charakterisierung des intermediären und des finalen Zustandes (EI und EI*-Zustand) eines Enzym-Inhibitor Komplexes bei einem zweistufigen Inhibitionsmechanismus durch langsam-bindende Hemmstoffe ist essentiell für rationale Verweilzeitoptimierung. Daher wurde die gegenwärtige Ansicht des EI und EI*-Zustandes von InhA mittels Kristallstrukturanalyse, MD und SMD Simulationen erneut aufgegriffen. Insgesamt bestätigten die Analysen, dass der EI*-Zustand einer Konformation ähnlich der 2X23 Kristallstruktur (mit langsam-bindenden Inhibitor \textbf{PT70}) gleicht, während eine Drehung der Reste Ile202 und Val203 mit einer weiter geöffneten Helix $\alpha 6$ dem EI-Zustand entspricht. Des Weiteren zeigten MD Simulationen den Einfluss naher Kristallkontakte zu Symmetrie-Nachbarn in der SBL Region auf die SBL Stabilität. Dies wird durch die Beobachtung hervorgehoben, dass die Ketten A und B' eines InhA-\textbf{PT155}-Komplexes und des angrenzenden Symmetrie-Nachbars, welche in engem Kontakt in der SBL Region stehen, signifikant stabilere SBLs aufweisen, als die Ketten A und B in einer Simulation des Tetramers. Zum Abschluss von Teil I wurden SMD Simulationen angewandt, auf deren Basis es möglich war, langsam-bindende InhA Inhibitoren von schnell-reversiblen (``rapid reversible'') Liganden zu unterscheiden.
\textbf{Vorhersage von \textit{Mycobacterium tuberculosis} Zellwand Permeabilität.} Die Zellwand von \textit{M.~tuberculosis} erschwert die antimycobakterielle Wirkstofffindung auf Grund ihrer einzigartigen Zusammensetzung und bietet eine intrinsische Antibiotikaresistenz gegenüber lipophilen und hydrophilen Substanzen. Um den chemischen Raum wirkstoffähnlicher Moleküle gegen diesen Erreger (``Druggability Space'') einzugrenzen, wurde eine groß angelegte Dataminingstudie durchgeführt, welche auf multivariater statistischer Analyse der Unterschiede der physikochemischen Zusammensetzung eines normalverteilten wirkstoffähnlichen chemischen Raumes und einer Datenbank von antimycobakteriellen -- und somit höchstwahrscheinlich permeablen -- Substanzen beruht. Dieser Ansatz resultierte in dem logistischen Regressionsmodell MycPermCheck, welches in der Lage ist die Permeabilitätswahrscheinlichkeit kleiner organischer Moleküle anhand ihrer physikochemischen Eigenschaften vorherzusagen. Die Evaluation von MycPermCheck deutet auf eine große Vorhersagekraft hin. Das Modell wurde als frei zugänglicher online Service und als lokale Kommandozeilenversion implementiert.
Methodiken und Ergebnisse aus beiden Teilen dieser Dissertation wurden kombiniert um ein virtuelles Screening nach antimycobakteriellen Substanzen durchzuführen. Myc\-PermCheck wurde verwendet um den chemischen Permeabilitätsraum von \textit{M.~tuberculosis} anhand der gesamten ZINC12 Datenbank wirkstoffähnlicher Moleküle abzuschätzen. Nach weiteren Filterschritten mit Bezug auf ADMET Eigenschaften, wurde InhA als exemplarisches Angriffsziel ausgewählt. Docking nach InhA führte schließlich zu einer Treffersubstanz, welche in darauffolgenden Schritten weiter optimiert wurde. Die Interaktionsqualität ausgewählter Derivate mit InhA wurde daraufhin mittels MD und SMD Simulationen in Bezug auf Protein und Ligand Stabilität, sowie auch der maximalen freien Energieänderung induzierter Ligandextraktion, untersucht. Die Ergebnisse der vorgestellten computerbasierten Experimente legen nahe, dass Substanzen mit einem Indol-3-Acethydrazid Gerüst eine neuartige Klasse von InhA Inhibitoren darstellen könnten. Weiterführende Untersuchungen könnten sich somit als lohnenswert erweisen.
|
232 |
Chemical bond analysis in the ten-electron seriesFransson, Thomas January 2009 (has links)
<p>This thesis presents briefly the application of quantum mechanics on systems ofchemical interest, i.e., the field of quantum chemistry and computational chemistry.The molecules of the ten-electron series, hydrogen fluoride, water, ammonia,methane and neon, are taken as computational examples. Some applications ofquantum chemistry are then shown on these systems, with emphasis on the natureof the molecular bonds. Conceptual methods of chemistry and theoreticalchemistry for these systems are shown to be valid with some restrictions, as theseinterpretations does not represent physically measurable entities.The orbitals and orbital energies of neon is studied, the binding van der Waalsinteractionresulting in a Ne2 molecule is studied with a theoretical bond lengthof 3.23 °A and dissociation energy of 81.75 μEh. The equilibrium geometries ofFH, H2O, NH3 and CH4 are studied and the strength and character of the bondsinvolved evaluated using bond order, dipole moment, Mulliken population analysisand L¨owdin population analysis. The concept of electronegativity is studied in thecontext of electron transfer. Lastly, the barrier of inversion for NH3 is studied, withan obtained barrier height of 8.46 mEh and relatively constant electron transfer.</p>
|
233 |
Ground and Excited State Aromaticity : Design Tools for π-Conjugated Functional Molecules and MaterialsDahlstrand, Christian January 2012 (has links)
The main focus of this thesis is on the aromaticity of the ground state and electronically excited states of π-conjugated molecules and polymers, as well as how aromaticity is connected to their properties. The electronic structures of polybenzenoid hydrocarbons (PBHs) were explored through density functional theory (DFT) calculations and the π-component of the electron localization function (ELFπ). The study revealed how the π-electronic structure is influenced by the fusion of double bonds or benzene rings to the PBHs. We also demonstrated that the π-electrons of benzene extend to accommodate as much aromaticity as possible when bond length distorted. The aromatic chameleon property displayed by fulvenes, isobenzofulvenes, fulvalenes, bis(fulvene)s, and polyfulvenes were investigated using DFT calculations. The tria-, penta-, and heptafulvenes were shown to possess ionization energies and electron affinities which can be tuned extensively by substitution, some of which even outperform TTF and TCNQ, the prototypical electron donor and acceptor, respectively. The singlet-triplet energy gap of pentafulvenes can be tuned extensively by substitution to the point that the triplet state is lower than the singlet state and thus becomes the ground state. The ELFπ of isobenzofulvene shows that the benzene ring in an electronically excited state can be more aromatic than the corresponding ring in the ground state. We have shown that the 6-ring of [5.6.7]quinarene is influenced by a Hückel aromatic resonance structure with 4n+2 π-electrons in the excited quintet state. The bis(fulvene)s which are composed of a donor type heptafulvene and an acceptor type pentafulvene, retain the basic donor-acceptor properties of the two fragments and could function as compact donor-acceptor dyads. A few of the designed polyfulvenes were found to have band gaps below 1 eV at the PBC-B3LYP/6-31G(d) level. Various 2,7-disubstituted fluorenones and dibenzofulvenes were synthesized and their excited state properties were investigated by absorption spectroscopy and time-dependent DFT calculations. It was found that the 1A → 1B transition of ππ* character can be tuned by substitution in the 2,7-positions. The 2,7-bis(N,N-dimethyl) derivatives of fluorenone and dibenzofulvene displayed low energy transitions at 2.18 and 1.61 eV, respectively, in toluene.
|
234 |
Chemical bond analysis in the ten-electron seriesFransson, Thomas January 2009 (has links)
This thesis presents briefly the application of quantum mechanics on systems ofchemical interest, i.e., the field of quantum chemistry and computational chemistry.The molecules of the ten-electron series, hydrogen fluoride, water, ammonia,methane and neon, are taken as computational examples. Some applications ofquantum chemistry are then shown on these systems, with emphasis on the natureof the molecular bonds. Conceptual methods of chemistry and theoreticalchemistry for these systems are shown to be valid with some restrictions, as theseinterpretations does not represent physically measurable entities.The orbitals and orbital energies of neon is studied, the binding van der Waalsinteractionresulting in a Ne2 molecule is studied with a theoretical bond lengthof 3.23 °A and dissociation energy of 81.75 μEh. The equilibrium geometries ofFH, H2O, NH3 and CH4 are studied and the strength and character of the bondsinvolved evaluated using bond order, dipole moment, Mulliken population analysisand L¨owdin population analysis. The concept of electronegativity is studied in thecontext of electron transfer. Lastly, the barrier of inversion for NH3 is studied, withan obtained barrier height of 8.46 mEh and relatively constant electron transfer.
|
235 |
First Principles and Genetic Algorithm Studies of Lanthanide Metal Oxides for Optimal Fuel Cell Electrolyte DesignIsmail, Arif 07 September 2011 (has links)
As the demand for clean and renewable energy sources continues to grow, much
attention has been given to solid oxide fuel cells (SOFCs) due to their efficiency and low
operating temperature. However, the components of SOFCs must still be improved
before commercialization can be reached. Of particular interest is the solid electrolyte,
which conducts oxygen ions from the cathode to the anode. Samarium-doped ceria (SDC)
is the electrolyte of choice in most SOFCs today, due mostly to its high ionic
conductivity at low temperatures. However, the underlying principles that contribute to
high ionic conductivity in doped ceria remain unknown, and so it is difficult to improve
upon the design of SOFCs. This thesis focuses on identifying the atomistic interactions in
SDC which contribute to its favourable performance in the fuel cell.
Unfortunately, information as basic as the structure of SDC has not yet been
found due to the difficulty in experimentally characterizing and computationally
modelling the system. For instance, to evaluate 10.3% SDC, which is close to the 11.1%
concentration used in fuel cells, one must investigate 194 trillion configurations, due to
the numerous ways of arranging the Sm ions and oxygen vacancies in the simulation cell.
As an exhaustive search method is clearly unfeasible, we develop a genetic algorithm
(GA) to search the vast potential energy surface for the low-energy configurations, which will be most prevalent in the real material.
With the GA, we investigate the structure of SDC for the first time at the DFT+U
level of theory. Importantly, we find key differences in our results from prior calculations of this system which used less accurate methods, which demonstrate the importance of accurately modelling the system. Overall, our simulation results of the structure of SDCagree with experimental measurements. We identify the structural significance of defects in the doped ceria lattice which contribute to oxygen ion conductivity. Thus, the structure
of SDC found in this work provides a basis for developing better solid electrolytes, which
is of significant scientific and technological interest.
Following the structure search, we perform an investigation of the electronic properties of SDC, to understand more about the material. Notably, we compare our calculated density of states plot to XPS measurements of pure and reduced SDC. This allows us to parameterize the Hubbard (U) term for Sm, which had not yet been done. Importantly, the DFT+U treatment of the Sm ions also allowed us to observe in our
simulations the magnetization of SDC, which was found by experiment.
Finally, we also study the SDC surface, with an emphasis on its structural similarities to the bulk. Knowledge of the surface structure is important to be able to understand how fuel oxidation occurs in the fuel cell, as many reaction mechanisms occur on the surface of this porous material. The groundwork for such mechanistic studies is provided in this thesis.
|
236 |
First Principles and Genetic Algorithm Studies of Lanthanide Metal Oxides for Optimal Fuel Cell Electrolyte DesignIsmail, Arif 07 September 2011 (has links)
As the demand for clean and renewable energy sources continues to grow, much
attention has been given to solid oxide fuel cells (SOFCs) due to their efficiency and low
operating temperature. However, the components of SOFCs must still be improved
before commercialization can be reached. Of particular interest is the solid electrolyte,
which conducts oxygen ions from the cathode to the anode. Samarium-doped ceria (SDC)
is the electrolyte of choice in most SOFCs today, due mostly to its high ionic
conductivity at low temperatures. However, the underlying principles that contribute to
high ionic conductivity in doped ceria remain unknown, and so it is difficult to improve
upon the design of SOFCs. This thesis focuses on identifying the atomistic interactions in
SDC which contribute to its favourable performance in the fuel cell.
Unfortunately, information as basic as the structure of SDC has not yet been
found due to the difficulty in experimentally characterizing and computationally
modelling the system. For instance, to evaluate 10.3% SDC, which is close to the 11.1%
concentration used in fuel cells, one must investigate 194 trillion configurations, due to
the numerous ways of arranging the Sm ions and oxygen vacancies in the simulation cell.
As an exhaustive search method is clearly unfeasible, we develop a genetic algorithm
(GA) to search the vast potential energy surface for the low-energy configurations, which will be most prevalent in the real material.
With the GA, we investigate the structure of SDC for the first time at the DFT+U
level of theory. Importantly, we find key differences in our results from prior calculations of this system which used less accurate methods, which demonstrate the importance of accurately modelling the system. Overall, our simulation results of the structure of SDCagree with experimental measurements. We identify the structural significance of defects in the doped ceria lattice which contribute to oxygen ion conductivity. Thus, the structure
of SDC found in this work provides a basis for developing better solid electrolytes, which
is of significant scientific and technological interest.
Following the structure search, we perform an investigation of the electronic properties of SDC, to understand more about the material. Notably, we compare our calculated density of states plot to XPS measurements of pure and reduced SDC. This allows us to parameterize the Hubbard (U) term for Sm, which had not yet been done. Importantly, the DFT+U treatment of the Sm ions also allowed us to observe in our
simulations the magnetization of SDC, which was found by experiment.
Finally, we also study the SDC surface, with an emphasis on its structural similarities to the bulk. Knowledge of the surface structure is important to be able to understand how fuel oxidation occurs in the fuel cell, as many reaction mechanisms occur on the surface of this porous material. The groundwork for such mechanistic studies is provided in this thesis.
|
237 |
Theoretical studies of the exohedral reactivity of fullerene compoundsOsuna Oliveras, Sílvia 26 March 2010 (has links)
Des del descobriment del buckminster ful.lerè el 1985, s'ha despertat un interés enorme per entendre la reactivitat química així com les propietats d'aquests compostos. La funcionalització exoèdrica del ful.lerè més abundant, el C60, està força ben establerta. Tanmateix, la investigació en aquest camp encara continua oberta ja que s'han sintetitzat una gran varietat de derivats molt prometedors donades les seves futures aplicacions. La tesi comprèn quinze capítols que contenen set publicacions relacionades. Els primers dos estudis es basen en la reacció Diels-Alder sobre els anomenats metal.loful.lerens endoèdrics TNT X3N@C78, X= Sc, Y. Aquest projecte de investigació està motivat pel desconeixament existent sobre les possibles conseqüències de l'encapsulació del grup X3N. El tercer estudi descriu minuciosament els canvis detectats en la funcionalització exoèdrica un cop s'ha produït l'encapsulació dels diferents gasos nobles. En aquesta tesi s'estudia en detall l'ús de l'aproximació ONIOM per a estudiar reaccions de cicloaddició en compostos ful.lerènics. Els resultats d'aquest projecte són d'alt interès per a la realització dels estudis posteriors sobre la reacció de Diels-Alder i la 1,3-dipolar en ful.lerens i derivats. Finalment, l'última part d'aquesta tesi es basa en les propietats antioxidants de determinats ful.lerens. A l'últim treball inclòs en aquesta tesi s'estudia en detall el mecanismo de reacció per a la eliminació del ió superòxid en presència de ful.lerens. / Since the buckminster fullerene discovery in 1985, a huge interest for understanding the chemical reactivity as well as the chemical properties of fullerene compounds has been awakened. The exohedral functionalization of the archetypal compound C60 is nowadays considered to be quite well-established. Still, the research in this field is open as a wide variety of derivatives with intriguing potential applications have been synthesized. The thesis is divided into fifteen chapters that contain seven related publications. The first two studies are based on the Diels-Alder reaction involving the Trimetallic Nitride Template (TNT) endohedral metallofullerenes X3N@C78, X = Sc, Y . This investigation project was basically motivated by the unclear evidence about the possible consequences of the X3N. The third study thoroughly describes the change on the exohedral functionalization upon noble gas encapsulation. In the fourth study included in this thesis, the performance of the ONIOM approach for studying cycloaddition reactions involving fullerene compounds is studied in detail. Results from the latter project are of interest for the following studies involving the 1,3-dipolar and the Diels-Alder cycloaddition reactions where the ONIOM strategy is employed. Finally, the last part of this thesis is based on the antioxidant properties of fullerene compounds, where the mechanism of action for the superoxide removal involving fullerene compounds is unraveled. The understanding of the SOD removal mechanism could represent a big improvement to design new fullerene derivatives with higher antioxidant properties.
|
238 |
Single and multiple addition to C60. A computational chemistry studyCases Amat, Montserrat 30 September 2003 (has links)
Des del seu descobriment, a la molècula C60 se li coneixen una varietat de derivats segons el tipus de funcionalització amb propietats fisicoquímiques específiques de gran interès científic. Una sel·lecció de derivats corresponents a addicions simple o múltiple al C60 s'ha considerat en aquest treball d'investigació. L'estudi a nivell de química computacional de diversos tipus d'addició al C60 s'han portat a terme per tal de poder donar resposta a aspectes que experimentalment no s'entenen o són poc clars.Els sistemes estudiats en referència a l'addició simple al C60 han estat en primer lloc els monoiminoful·lerens, C60NR, (de les dues vies proposades per la seva síntesi, anàlisis cinètic i termodinàmic han ajudat a explicar els mecanismes de formació i justificar l'addició a enllaços tipus [5,6]), i en segon lloc els metanoful·lerens i els hidroful·lerens substituits, C60CHR i C60HR, (raons geomètriques, electròniques, energètiques i magnètiques justifiquen el diferent caràcter àcid ente ambdós derivats tenint en compte una sèrie de substituents R amb diferent caràcter electrònic donor/acceptor). Els fluoroful·lerens, C60Fn, i els epoxid ful·lerens, C60On, (anàlisi sistemàtic dels seus patrons d'addició en base a poder justificar la força que els governa han aportat dades complementàries a les poques que existeixen experimentalment al respecte). / Since the discovery of C60 molecule a large number of derivatives molecules have been described with a great scientific interest of their specific physical and chemical properties. A selection of single and multiple addition products has been considered in this investigation. Study at Computational Chemistry level for this selected derivatives have been carried out in order to give answer to several points that experimentally are not understandable or not enough clear.As single addition derivatives, firstly were studied the monoiminofullerenes, C60NR, (two routes of synthesis have been considered, kinetic and thermodynamic analysis have help to explain formation mechanisms and justify the possible addition at [5,6]-type bonds), and secondly the methanofullerenes and the substituted hydrofullerenes, C60CHR and C60HR, (geometric, electronic, energetic and magnetic reasons justify the different acid character between both series of derivatives taking care on the influence of R substituents with different donor/acceptor character). The fluorofullerenes, C60Fn, and the epoxide fullerenes, C60On, have been studied as multiple addition derivatives (systematic analysis of the addition pattern have been performed in the way to find reasons to justify the driving force of the multiple addition process).
|
239 |
Investigation Of Biologically Important Small Molecules: Quantum Chemical And Molecular Dynamics CalculationsTekin, Emine Deniz 01 August 2010 (has links) (PDF)
In this thesis, six small molecules (S-allylcysteine, S-allyl mercaptocysteine, allicin, methyl propyl disulfide, allyl methyl sulfide and dipropylsulfide) that are found in garlic and onion, and are known to be beneficial for human health were studied using molecular mechanics, semi-empirical methods, ab-initio (Restricted Hartree Fock), and density functional theory. Using the same methods, a synthetic pyrethroid pesticide molecule, called cyfluthrin, was also studied. Structural, vibrational and electronic properties of these molecules were found. These theoretical studies could clarify the role of these molecules on human health before they are commercially developed and used. In addition, unfolding dynamics of small peptide sequences (DDATKTFT and its variants) in immunoglobulin G-binding protein G was investigated. Protein folding and unfolding is one of the most important unsolved problems in molecular biology. Because of the large number of atoms involved in protein folding, it is a massive computational problem. The hope is that, one could understand this mechanism with the help of molecular dynamics simulation on small peptides. One of our findings is that the location of the hydrogen bonds is important for the stability of the peptide.
|
240 |
Truth and tractability: compromising between accuracy and computational cost in quantum computational chemistry methods for noncovalent interactions and metal-salen catalysisTakatani, Tait 01 July 2010 (has links)
Computational chemists are concerned about two aspects when choosing between the myriad of theoretical methodologies: the accuracy (the
"truth") and the computational cost (the tractability). Among the least expensive methods are the Hartree-Fock (HF), density functional theory (DFT), and second-order Moller-Plesset perturbation theory (MP2) methods. While each of these methods yield excellent results in many
cases, the inadequate inclusion of certain types of electron correlation (either high-orders or nondynamical) can produce erroneous results.
The compromise for the computation of noncovalent interactions often comes from empirically scaling DFT and/or MP2 methods to fit benchmark
data sets. The DFT method with an empirically fit dispersion term (DFT-D) often yields semi-quantitative results. The spin-component
scaled MP2 (SCS-MP2) method parameterizes the same- and opposite-spin correlation energies and often yields less than 20% error for prototype
noncovalent systems compared to chemically accurate CCSD(T) results. There is no simple fix for cases with a large degree of nondynamical
correlation (such as transition metal-salen complexes). While testing standard and new DFT functionals on the spin-state energy gaps of
transition metal-salen complexes, no DFT method produced reliable results compared to very robust CASPT3 results. Therefore each metal-salen
complex must be evaluated on a case-by-case basis to determine which methods are the most reliable. Utilizing a combination of DFT-D and SCS-MP2 methods, the reaction mechanism for the addition of cyanide to unsaturated imides catalyzed by the Al(Cl)-salen complex was performed. Various experimental observations are rationalized through this mechanism.
|
Page generated in 0.3683 seconds