• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 10
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Axial-load response of CFST stub columns with external stainless steel and recycled aggregate concrete: Testing, mechanism analysis and design

Zhang, W-H., Wang, R., Zhao, H., Lam, Dennis, Chen, P. 18 March 2022 (has links)
Yes / Recycled aggregate concrete filled stainless steel tube (RAC-FSST) is a new type of composite member combining the advantage of stainless steel and RAC. In this paper, a total of twenty-four RAC-FSST stub columns were tested under axial load, considering the influences of coarse recycled aggregate (CRA) content, steel ratios and compressive strengths of RAC. The obtained results, including the failure patterns, responses of axial load vs. deformation, stress states of external stainless steel tube and inner RAC and confinement effects, were systematically analyzed. Results indicated that all specimens presented good ductility and high residual strengths after reaching the maximum axial load. The elastic stiffness of RAC-FSSTs obviously declined with the increasing CRA content, while the strain at the ultimate load was larger. The inclusion of CRA could advance the occurrence of the confinement and lead to lower confining stress. Based on the experimental results, an analytical model with consideration of confinement action was developed to predict the axial response of RAC-FSST stub columns. Besides, the current design provisions for the normal CFST and RAC-FST members were employed to evaluate their applicability to RAC-FSSTs. In general, the design rules EN 1994-1-1:2004, GB 50936-2014 and T/CECS 625-2019 gave a conservative and relatively accurate prediction on ultimate strength of RAC-FSST stub columns. / This work was supported by the National Natural Science Foundation.
2

Experiments on special-shaped CFST stub columns under axial compression

Ren, Q-X., Han, L-H., Lam, Dennis, Hou, C. January 2014 (has links)
This paper is an attempt to study the behavior of axially loaded concrete filled steel tubular (CFST) stub columns with special-shaped cross-sections, i.e. triangular, fan-shaped, D-shaped, 1/4 circular and semi-circular. A total of forty-four specimens including CFST stub columns and reference hollow steel tubular stub columns were tested. The effects of the changing steel tube wall thickness and the infill of concrete on the behavior of the composite columns were investigated. The results showed that the tested special-shaped CFST stub columns behaved in a ductile manner, and the composite columns showed an outward local buckling model near the middle section. Generally, the failure modes of these five kinds of special-shaped specimens were similar to those of the square CFST stub columns. Finally, simplified model for predicting the cross-sectional strength of the special-shaped CFST sections was discussed and proposed.
3

Tests on elliptical concrete filled steel tubular (CFST) beams and columns

Ren, Q-X., Han, L-H., Lam, Dennis, Li, W. 04 May 2014 (has links)
No / This paper presents a series of test results of elliptical concrete filled steel tubular (CFST) beams and columns to explore their performance under bending and compression. A total of twenty-six specimens were tested, including eight beams under pure bending and eighteen columns under the combination of bending and compression. The main parameters were the shear span to depth ratio for beams, the slenderness ratio and the load eccentricity for columns. The test results showed that the CFST beams and columns with elliptical sections behaved in ductile manners and were similar to the CFST members with circular sections. Finally, simplified models for predicting the bending strength, the initial and serviceability-level section bending stiffness of the elliptical CFST beams, as well as the axial and eccentric compressive strength of the composite columns were discussed.
4

Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns.

El-Lobody, E., Young, B., Lam, Dennis January 2006 (has links)
This paper presents the behaviour and design of axially loaded concrete-filled steel tube circular stub columns. The study was conducted over a wide range of concrete cube strengths ranging from 30 to 110 MPa. The external diameter of the steel tube-to-plate thickness (D/t) ratio ranged from 15 to 80 covering compact steel tube sections. An accurate finite element model was developed to carry out the analysis. Accurate nonlinear material models for confined concrete and steel tubes were used. The column strengths and load¿axial shortening curves were evaluated. The results obtained from the finite element analysis were verified against experimental results. An extensive parametric study was conducted to investigate the effects of different concrete strengths and cross-section geometries on the strength and behaviour of concrete-filled compact steel tube circular stub columns. The column strengths predicted from the finite element analysis were compared with the design strengths calculated using the American, Australian and European specifications. Based on the results of the parametric study, it is found that the design strengths given by the American Specifications and Australian Standards are conservative, while those of the European Code are generally unconservative. Reliability analysis was performed to evaluate the current composite column design rules.
5

Shape effect on the behaviour of axially loaded concrete filled steel tubular stub columns at elevated temperature.

Dai, Xianghe, Lam, Dennis January 2012 (has links)
Concrete filled steel tubular columns have been extensively used in modern construction owing to that they utilise the most favourable properties of both constituent materials. It has been recognized that concrete filled tubular columns provide excellent structural properties such as high load bearing capacity, ductility, large energy-absorption capacity and good structural fire behaviour. This paper presents the structural fire behaviour of a series of concrete filled steel tubular stub columns with four typical column sectional shapes in standard fire. The selected concrete filled steel tube stub columns are divided into three groups by equal section strength at ambient temperature, equal steel cross sectional areas and equal concrete core cross sectional areas. The temperature distribution, critical temperature and fire exposing time etc. of selected composite columns are extracted by numerical simulations using commercial FE package ABAQUS. Based on the analysis and comparison of typical parameters, the effect of column sectional shapes on member temperature distribution and structural fire behaviour are discussed. It shows concrete steel tubular column with circular section possesses the best structural fire behaviour, followed by columns with elliptical, square and rectangular sections. Based on this research study, a simplified equation for the design of concrete filled columns at elevated temperature is proposed.
6

Innovative Self-Centering Connection for CCFT Composite Columns

Gao, Yu 27 January 2016 (has links)
Concrete filled steel tubes are regarded as ideal frame members in seismic resisting systems, as they combine large axial and flexural capacity with ductility. The combination of the two materials increases the strength of the confined concrete and avoids premature local buckling of the steel tube. These benefits are more prominent for circular than for rectangular concrete filled steel tubes. However, most common connection configurations for circular concrete filled tubes are not economic in the US market due to (a) the desire of designers to use only fully restrained connections and its associated (b) high cost of fabrication and field welding. Research indicates that well designed partially restrained connections can supply equal or even better cyclic behavior. Partially restrained connections also possess potential capability to develop self-centering system, which has many merits in seismic design. The goal of this research is to develop a new connection configuration between circular concrete filled steel columns and conventional W steel beams. The new connection configuration is intended to provide another option for rapid assembling on site with low erection costs. The proposed connection is based on an extended stiffened end plate that utilizes through rods. The rods are a combination of conventional steel and shape memory alloy that provide both energy dissipation and self-centering capacity. The new connection configuration should be workable for large beam sizes and can be easily expanded to a biaxial bending moment connection. / Ph. D.
7

Experiments on the bearing capacity of tapered concrete filled double skin steel tubular (CFDST) stub columns

Ren, Q-X., Hou, C., Lam, Dennis, Han, L-H. January 2014 (has links)
No / Tapered concrete filled double skin steel tubular (CFDST) columns have been used in China for structures such as electricity transmission towers. In practice, the bearing capacity related to the connection details on the top of the column is not fully understood. In this paper, the experimental behaviour of tapered CFDST stub columns subjected to axial partial compression is reported, sixteen specimens with top endplate and ten specimens without top endplate were tested. The test parameters included: (1) tapered angle, (2) top endplate thickness, and (3) partial compression area ratio. Test results show that the tapered CFDST stub columns under axial partial compression behaved in a ductile manner. The axial partial compressive behaviour and the failure modes of the tapered CFDST stub columns were significantly influenced by the parameters investigated. Finally, a simple formula for predicting the cross-sectional capacity of the tapered CFDST sections under axial partial compression is proposed.
8

Finite element analysis and simple design calculation method for rectangular CFSTs under local bearing forces

Yang, Y., Wen, Z., Dai, Xianghe 26 May 2016 (has links)
No / Rectangular concrete-filled steel tube (CFST) may be subjected to local bearing forces transmitted from brace members while being used as a chord of a truss, and thus development of finite element analysis (FEA) and simple design calculation method for rectangular CFSTs under local bearing forces are very important to ensure the safety and reliable design of such a truss with rectangular CFST chords in engineering practices. A three-dimensional FEA model was developed using ABAQUS software package to predict the performance of thin-walled rectangular CFST under local bearing forces. The preciseness of the predicted results was evaluated by comparison with experimental results reported in the available literature. The comparison and analysis show that the predicted failure pattern, load versus deformation curves and bearing capacity of rectangular CFST under local bearing forces obtained from FEA modelling were generally in good agreement with the experimental observations. After the validation, the FEA model was adopted for the mechanism analysis of typical rectangular CFSTs under local bearing forces. Finally, based on the parametric analysis, simple design equations were proposed to be used to calculate the bearing capacity of rectangular CFST under local bearing forces. / National Natural Science Foundation of China (51421064) and the Natural Science Foundation of Liaoning Province (2013020125). The financial support is gratefully acknowledged.
9

Estudo da transferência de forças de cisalhamento na ligação entre pilares mistos preenchidos e vigas / A study on shear forces transfer of connections involving steel beams and concrete-filled steel tubular columns

Araujo, Cynthia Meilli Silva 08 September 2009 (has links)
Este trabalho tem por objetivo investigar as ligações viga-pilar misto preenchido, no tocante à transferência de forças de cisalhamento na região de ligação. O estudo engloba uma investigação experimental com ensaios do tipo push-out com carregamento centrado no núcleo de concreto e uma simulação numérica no pacote computacional DIANA visando obter dados de comportamento do mecanismo de transferência de forças de cisalhamento, aplicado à região de ligação viga-pilar. Foram utilizados modelos com 800 mm de altura e seção quadrada de dimensão (200 x 200 x 6,3) mm obtida a partir da composição de dois perfis U (200 x 100 x 6,3) mm. A resistência à compressão média do concreto de preenchimento foi de 50 MPa. Ao todo, foram ensaiados 3 modelos de ligação, utilizando chapas de extremidade e barras rosqueadas como mecanismo de ligação viga-pilar. Como elementos para transferência de forças entre o tubo de aço e o núcleo de concreto foram usados conectores tipo pino com cabeça ou cantoneiras. Os resultados experimentais mostraram a eficiência das barras rosqueadas e dos conectores de cisalhamento na transferência dos esforços de cisalhamento na ligação viga-pilar e na interface perfil de aço e concreto. A simulação numérica teve concordância satisfatória com os resultados experimentais obtidos. / In the design of concrete-filled steel tubular columns, the concrete and the steel tube must work together in order to achieve the overall resistance, stiffness and stability requirements. It is important that exists an adequate mechanism to transfer the forces from the steel beam to the steel tube, and then to the concrete core. This work presents a study on shear transfer in connections involving concrete-filled steel tubular columns and steel beams. The work was divided in two parts, being the first an experimental analysis with push-out tests, and the second one a numerical simulation of the tests, using the software DIANA. The tested specimens were 800 mm height , with square section (200 x 200 x 6,3mm) obtained from two welded U-shape profiles. A concrete with compressive strength of 50 MPa was used as a filling for the columns. Altogether, three connections with steel end plates and passing bars were tested. Two types of shear connectors between steel column and concrete core were used: stud-bolts and angles, and a reference specimen without connectors was also tested. The results showed the efficiency of the shear connectors in the tranference of forces.
10

Estudo teórico-experimental da ligação entre pilares mistos preenchidos e vigas pré-moldadas de concreto / Experimental and theoretical study of precast concrete beam to concrete-filled steel tube column connection

Bezerra, Leonardo Melo 27 May 2011 (has links)
Neste trabalho, ligações entre vigas pré-moldadas de concreto e pilares mistos preenchidos foram propostas com a finalidade de transferir momento de flexão e força cortante das vigas para os pilares mobilizando os núcleos de concreto. Foi realizado um estudo numérico-experimental das ligações onde foi avaliada a viabilidade e a eficiência destas na transferência dos esforços. Em uma primeira fase, modelos compostos por pilar misto e consolo metálico (modelos 1 e 2) foram confeccionados, testados experimentalmente e modelados numericamente (método dos elementos finitos) para avaliar a eficiência do consolo na transferência da força cortante. Observou-se que a transferência da força cortante do consolo para o tubo metálico foi eficaz. O consolo se comportou de maneira previsível e suportou cargas elevadas. O uso de conectores de cisalhamento internos aos pilares aumentou a capacidade de carga e o desempenho dos mesmos. Na etapa seguinte da pesquisa foram confeccionados dois modelos, compostos por: pilar, viga pré-moldada, laje e consolo formando pórticos. Em um destes modelos (modelo 4) uma caixa metálica foi incorporada à viga pré-moldada e parafusado ao consolo metálico com a finalidade de transferir os momentos positivos, enquanto que outro modelo foi confeccionado e estudado sem este elemento (modelo 3). Nestes modelos foi avaliada a capacidade de transferência do momento de flexão (positivo e negativo) e forças cortantes com a ligação submetida a ciclos de carga. No modelo 3, a ligação transferiu de forma eficiente o momento negativo, porém o desempenho para o momento positivo não foi satisfatório, com baixa resistência e rigidez ao longo dos ciclos de carga. No modelo 4 foi observado considerável aumento da resistência e rigidez se comparado com o modelo anterior. Entretanto, a caixa metálica incorporada à viga pré-moldada não foi capaz de fazer com que a ligação resistisse aos momentos positivos como a mesma eficiência que resistiu aos negativos e houve degradação de suas características estruturais ao longo dos ciclos de carga. / In this work, connections of precast concrete beam to concrete-filled steel tube column were proposed to transfer the bending moment and shear forces from the beam to the composite column, mobilizing the concrete core. Was performed a numerical and experimental study of the proposed connections to evaluate the feasibility and effectiveness of them in the transfer of bending and shear forces from the beam to the column. In a first stage, models composed by column and steel corbel (models 1 e 2) were numerically and experimentally tested aiming the efficiency of the connection in shear transfer. It was observed that the transfer of shear to the steel tube was guaranteed. The corbel behaved in a predictable way and supported high loads. The use of shear connectors in the column increased the load capacity and improved the connection performance. In next stage of the research work, two models were prepared, composed by: column, precast concrete beam, steel corbel and slabs constituting frames. In one of these models (model 4) a steel box was incorporated into the precast beam and bolted to the steel corbel in order to transfer the positive moments, whereas another model was built and studied without this device (model 3). In this models were evaluated the efficiency in the transfer of bending moments (positive and negative) and shear forces with the models subjected to a cyclic loads. In the model 3, the connection transferred efficiently the negative bending, but the performance for the positive bending was not satisfactory, with reduced strength and stiffness over the load cycles. In model 4 was observed considerable increase in strength and stiffness compared with the previous model. However, the device incorporated in the precast beam was unable to make the connection resist to the positive moments with the same efficiency observed when subjected to the negative moments and a degradation of their structural characteristics was observed during the loading cycles.

Page generated in 0.1117 seconds