• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of overhang construction on girder design

Yang, Seongyeong 02 June 2010 (has links)
Economical constraints on the design of bridges usually necessitate the use of as few girders as possible across the bridge width. The girders are typically uniformly spaced transversely with the deck extending past the fascia girders, thereby resulting in an overhang. While designers commonly employ rules of thumb with regard to the geometry of the overhang, these rules of thumb generally lack research justification and the actual girder behavior is not well understood. Overhang construction often produces torsinally unbalanced loading on the girder system, which can lead to problems in steel and concrete girder bridges during construction. The main issue with concrete girder bridges is excessive lateral rotation in the fascia girder, which can cause potential problems of construction safety and maintenance. Field problems on concrete bridges have been reported in the state of Texas where the fascia girders experienced excessive rotation during construction. For steel girder bridges, the unbalanced overhang loading can lead to both local and global instability. Locally, the overhang brackets often exert a large force on the web plate that can distort the web and increase the magnitude of the plate imperfection. Global stability problems have also occurred primarily on bridge widening projects when a few girders are added to an existing bridge system. The girders in the widening are usually isolated from the existing bridge and the unbalanced load from the overhang can cause excessive twist that intensifies the global stability of the girder system. The objective of this study was to improve the understanding of the bridge behavior due to the unbalanced loading from the overhangs and to identify critical factors affecting the girder behavior. The study was also aimed at developing simple design methodologies and design recommendations for overhang construction. The research included field monitoring, laboratory tests, and parametric finite element analyses. The data from the field monitoring and laboratory tests were used to validate finite element models for both concrete and steel girder bridges. Based on the validated models, detailed parametric studies were conducted to investigate the effects of the unbalanced loading. Results from the parametric studies were used to identify the geometries of girder systems that are prone to problems with the overhangs as well as to provide design suggestions. In addition, a closed-form solution for lateral rotation in the fascia girder in a concrete girder bridge was derived using a rigid-body model, and was used to develop design methodology and design recommendations for overhang construction. / text
2

Courbes de fragilité pour les ponts au Québec tenant compte du sol de fondation / Fragility curves for bridges in Québec accounting for soil-foundation system

Suescun, Juliana Ruiz January 2010 (has links)
Abstract : Fragility curves are a very useful tool for seismic risk assessment of bridges. A fragility curve describes the probability of a structure being damaged beyond a specific damage state for different levels of ground shaking. Since more than half of all bridges in the province of Quebec (Canada) are in service for more than 30 years and that these bridges were designed at that time without seismic provisions, generating fragility curves for these structures is more than necessary. These curves can be used to estimate damage and economic loss due to an earthquake and prioritize repairs or seismic rehabilitations of bridges. Previous studies have shown that seismic damage experienced by bridges is not only a function of the epicentral distance and the severity of an earthquake but also of the structural characteristics of the bridge and the soil type on which it is built. Current methods for generating fragility curves for bridges do not account for soil conditions. In this work, analytical fragility curves are generated for multi-span continuous concrete girder bridges, which account for 21% of all bridges in Quebec, for the different soil profile types specified in the Canadian highway bridge design code (CAN/CSA-S6-06). These curves take into account the different types of abutment and foundation specific to these bridges. The fragility curves are obtained from time-history nonlinear analyses using 120 synthetic accelerograms generated for eastern Canadian regions, and from a Monte Carlo simulation to combine the fragility curves of the different structural components of a bridge||Résumé : Les courbes de fragilité sont un outil très utile pour l’évaluation du risque sismique des ponts. Une courbe de fragilité représente la probabilité qu'une structure soit endommagée au-delà d'un état d'endommagement donné pour différents niveaux de tremblement de terre. Étant donné que plus de la moitié des ponts dans la province de Québec (Canada) ont plus de 30 années de service et que ces ponts n'ont pas été conçus à l'époque à l'aide de normes sismiques, la génération de courbes de fragilité pour ces structures est plus que nécessaire. Ces courbes peuvent servir à estimer les dommages et les pertes économiques causés par un tremblement de terre et à prioriser les réparations ou les réhabilitations sismiques des ponts. Des études antérieures ont montré que l'endommagement subi par les ponts suite à un tremblement de terre n'est pas seulement fonction de la distance de l'épicentre et de la sévérité du tremblement de terre, mais aussi des caractéristiques structurales du pont et du type de sol sur lequel il est construit. Les méthodes actuelles pour générer les courbes de fragilité des ponts ne tiennent pas compte des conditions du sol. Dans ce travail de recherche, des courbes de fragilité analytiques sont générées pour les ponts à portées multiples à poutres continues en béton armé, soit pour 21% des ponts au Québec, pour les différents types de sol spécifiés dans le Code canadien sur le calcul des ponts routiers (CAN/CSA-S6-06). Ces courbes prennent en compte les différents types de culée et de fondation spécifiques à ces ponts. Les courbes de fragilité sont obtenues à partir d'analyses temporelles non linéaires réalisées à l'aide de 120 accélérogrammes synthétiques généres pour l’est du Canada, et d'une simulation de Monte Carlo pour combiner les courbes de fragilité des différentes composantes du pont.
3

The Influence of the Recommended LRFD Guidelines for the Seismic Design of Highway Bridges on Virginia Bridges

Widjaja, Matius Andy 26 August 2003 (has links)
The influence of the recommended LRFD Guidelines for the seismic design of highway bridges in Virginia was investigated by analyzing two existing bridges. The first bridge has prestressed concrete girders and is located in the Richmond area. The second bridge has steel girders and is located in the Bristol area. The analysis procedure for both bridges is similar. First the material and section properties were calculated. Then the bridge was modeled in RISA 3D. Live and dead load were imposed on the bridge to calculate the cracked section properties of the bridge. The period of vibration of the bridge was also calculated. After the soil class of the bridge was determined, the design response spectrum curve of the bridge was drawn. The spectral acceleration obtained from the design spectrum curve was used to calculate the equivalent earthquake loads, which were applied to the superstructure of the bridge to obtain the earthquake load effects. Live and dead loads were also applied to get the live and dead load effects. The combined effects of the dead, live and earthquake loads were compared to the interaction diagram of the columns and moment strength of the columns. The details of the bridge design were also checked with the corresponding seismic design requirement.A parametric study was performed to explore the effects of different column heights and superstructure heights in different parts of Virginia. The column longitudinal reinforcing was increased to satisfy the bridge axial loads and moments that are not within the column interaction diagram. / Master of Science

Page generated in 0.086 seconds