• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 21
  • 1
  • Tagged with
  • 75
  • 75
  • 75
  • 28
  • 21
  • 21
  • 16
  • 15
  • 14
  • 14
  • 13
  • 12
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.

A model for adaptive multimodal mobile notification

Brander, William January 2007 (has links)
Information is useless unless it is used whilst still applicable. Having a system that notifies the user of important messages using the most appropriate medium and device will benefit users that rely on time critical information. There are several existing systems and models for mobile notification as well as for adaptive mobile notification using context awareness. Current models and systems are typically designed for a specific set of mobile devices, modes and services. Communication however, can take place in many different modes, across many different devices and may originate from many different sources. The aim of this research was to develop a model for adaptive mobile notification using context awareness. An extensive literature study was performed into existing models for adaptive mobile notification systems using context awareness. The literature study identified several potential models but no way to evaluate and compare the models. A set of requirements to evaluate these models was developed and the models were evaluated against these criteria. The model satisfying the most requirements was adapted so as to satisfy the remaining criteria. The proposed model is extensible in terms of the modes, devices and notification sources supported. The proposed model determines the importance of a message, the appropriate device and mode (or modes) of communication based on the user‘s context, and alerts the user of the message using these modes. A prototype was developed as a proof-of-concept of the proposed model and evaluated by conducting an extensive field study. The field study highlighted the fact that most users did not choose the most suitable mode for the context during their initial subscription to the service. The field study also showed that more research needs to be done on an appropriate filtering mechanism for notifications. Users found that the notifications became intrusive and less useful the longer they used them.

Inferring social and internal context using a mobile phone

Phithakkitnukoon, Santi. Dantu, Ram, January 2009 (has links)
Thesis (Ph. D.)--University of North Texas, Dec., 2009. / Title from title page display. Includes bibliographical references.

Contextual mobile adaptation

Hall, Malcolm. January 2008 (has links)
Thesis (Ph.D.) - University of Glasgow, 2008. / Ph.D. thesis submitted to the Faculty of Information and Mathematical Sciences, Department of Computing Science, University of Glasgow, 2008. Includes bibliographical references. Print version also available.

A software testing framework for context-aware applications in pervasive computing

Lu, Heng, January 2008 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2009. / Includes bibliographical references (p. 135-151) Also available in print.

An indoor wireless LAN location determination system

Song, Lanlan. Wang, Yu. January 2005 (has links)
Thesis--Auburn University, 2005. / Abstract. Vita. Includes bibliographic references (p.63-67).

Validating context-aware applications

Wang, Zhimin. January 2008 (has links)
Thesis (Ph.D.)--University of Nebraska-Lincoln, 2008. / Title from title screen (site viewed Nov. 25, 2008). PDF text: xiii, 173 p. : ill. ; 2 Mb. UMI publication number: AAT 3315261. Includes bibliographical references. Also available in microfilm and microfiche formats.

A model for context awareness for mobile applications using multiple-input sources

Pather, Direshin January 2015 (has links)
Context-aware computing enables mobile applications to discover and benefit from valuable context information, such as user location, time of day and current activity. However, determining the users’ context throughout their daily activities is one of the main challenges of context-aware computing. With the increasing number of built-in mobile sensors and other input sources, existing context models do not effectively handle context information related to personal user context. The objective of this research was to develop an improved context-aware model to support the context awareness needs of mobile applications. An existing context-aware model was selected as the most complete model to use as a basis for the proposed model to support context awareness in mobile applications. The existing context-aware model was modified to address the shortcomings of existing models in dealing with context information related to personal user context. The proposed model supports four different context dimensions, namely Physical, User Activity, Health and User Preferences. A prototype, called CoPro was developed, based on the proposed model, to demonstrate the effectiveness of the model. Several experiments were designed and conducted to determine if CoPro was effective, reliable and capable. CoPro was considered effective as it produced low-level context as well as inferred context. The reliability of the model was confirmed by evaluating CoPro using Quality of Context (QoC) metrics such as Accuracy, Freshness, Certainty and Completeness. CoPro was also found to be capable of dealing with the limitations of the mobile computing platform such as limited processing power. The research determined that the proposed context-aware model can be used to successfully support context awareness in mobile applications. Design recommendations were proposed and future work will involve converting the CoPro prototype into middleware in the form of an API to provide easier access to context awareness support in mobile applications.

A context-aware model to improve usability of information presented on mobile devices

Ntawanga, Felix Fred January 2014 (has links)
Online information access on mobile devices is increasing as a result of the growth in the use of Internet-enabled handheld (or pocket-size) devices. The combined influence of recent enabling technologies such as Web 2.0, mobile app stores and improved wireless networks have driven the increase in online applications that allow users to access various types of information on mobile devices regardless of time and location. Examples of such applications (usually shortened to app) include: social media, such as FacebookTM App and TwitterTM App, banking applications such as (Standard Bank South Africa)TM Mobile Banking App and First National Bank (FNB) BankingTM App, and news application such as news 24TM App and BBCTM News App. Online businesses involved in buying, selling and business transaction processing activities via the Internet have exploited the opportunity to extend electronic commerce (e-commerce) initiatives into mobile commerce (m-commerce). Online businesses that interact with end user customers implement business to consumer (B2C) m-commerce applications that enable customers to access and browse product catalogue information on mobile devices, anytime, anywhere. Customers accessing electronic product catalogue information on a mobile device face a number of challenges such as a long list of products presented on a small screen and a longer information download time. These challenges mainly originate from the limiting and dynamic nature of the mobile apps operating environment, for example, dynamic location, bandwidth fluctuations and, diverse and limited device features, collectively referred to as context. The goal of this research was to design and implement a context-aware model that can be incorporated into an m-commerce application in order to improve the presentation of product catalogue information on m-commerce storefronts. The motivation for selecting product catalogue is prompted by literature which indicates that improved presentation of information in m-commerce (and e-commerce) applications has a positive impact on usability of the websites. Usable m-commerce (and e-commerce) websites improve efficiency in consumer behaviour that impacts sales, profits and business growth. The context-aware model aimed at collecting context information within the user environment and utilising it to determine optimal retrieval and presentation of product catalogue in m-commerce. An integrated logical context sensor and Mathematical algorithms were implemented in the context-aware model. The integrated logical context sensor was responsible for the collection of different types of predetermined context information such as device specification or capabilities, connection bandwidth, location and time of the day as well as the user profile. The algorithms transformed the collected context information into usable formats and enabled optimal retrieval and presentation of product catalogue data on a specific mobile device. Open-source implementation tools were utilised to implement components of the model including: HTML5, PhP, JavaScript and MySQL database. The context-aware model was incorporated into an existing m-commerce application. Two user evaluation studies were conducted during the course of the research. The first evaluation was to evaluate the accuracy of information collected by the context sensor component of the model. This survey was conducted with a sample of 30 users from different countries across the world. In-between the context sensor and main evaluation surveys, a pilot study was conducted with a sample of 19 users with great experience in mobile application development and use from SAP Next Business and Technology, Africa. Finally an overall user evaluation study was conducted with a sample of 30 users from a remote area called Kgautswane in Limpopo Province, South Africa. The results obtained indicate that the context-aware model was able to determine accurate context information in real-time and effectively determine how much product information should be retrieved and how the information should be presented on a mobile device interface. Two main contributions emerged from the research, first the research contributed to the field of mobile Human Computer Interaction. During the research, techniques of evaluating and improving usability of mobile applications were demonstrated. Secondly, the research made a significant contribution to the upcoming field of context-aware computing. The research brought clarity with regard to context-aware computing which is lacking in existing, current research despite the field’s proven impact of improving usability of applications. Researchers can utilise contributions made in this research to develop further techniques and usable context-aware solutions.

Effective test case selection for context-aware applications based on mutation testing and adequacy testing from a context diversityperspective

Wang, Huai, 王怀 January 2013 (has links)
Mutation testing and adequacy testing are two major technologies to assure the quality of software. In this thesis, we present the first work that alleviates the high cost of mutation testing and ineffectiveness of adequacy testing for context-aware applications. We also present large-scale multi-subject case studies to evaluate how our work successfully alleviates these problems. Mutation testing incurs a high execution cost if randomly selected test inputs kill a small percentage of remaining live mutants. To address this problem, we formulate the notion of context diversity to measure the context changes inherent in test inputs, and propose three context-aware strategies in the selection of test inputs. The empirical results show that the use of test inputs with higher context diversity can significantly benefit mutation testing in terms of resulting in fewer test runs, fewer test case trials, and smaller resultant test suites that achieve a high mutation score level. The case study also shows that at the test case level, the context diversity of test inputs positively and strongly correlates with multiple types of adequacy metrics, which provide a foundation on why context diversity contributes to the effectiveness of test cases in revealing faults in context-aware applications. In adequacy testing, many strategies randomly select test cases to construct adequate test suites with respect to program-based adequacy criteria. They usually exclude redundant test cases that are unable to improve the coverage of the test requirements of an adequacy criterion achieved by constructing test suites. These strategies have not explored in the diversity in test inputs to improve the test effectiveness of test suites. To address this problem, we propose three context-aware refined strategies to check whether redundant test cases can replace previously selected test cases to achieve the same coverage level but with different context diversity levels. The empirical study shows that context diversity can be significantly injected into adequate test suites, and favoring test cases with higher context diversity can significantly improve the fault detection rates of adequate test suites for testing context-aware applications. In conclusion, this thesis makes the significant contributions to the research in testing context-aware applications: (1) It has formulated context diversity, a novel metric to measure context changes inherent in test inputs. (2) It has proposed three context-aware strategies to select test cases with different levels of context diversity. Compared with the baseline strategy, the strategy CAS-H that uses test cases with higher context diversity can significantly reduce the cost of mutation testing over context-aware applications in terms of less number of test runs, smaller adequate test suites, and less number of test inputs used to construct test suites. (3) It has defined three context-aware refined strategies to construct adequate test suites with different context diversity levels. Compared with the baseline strategy, the strategy CARS-H that favors test cases with higher context diversity can significantly improve the effectiveness of adequacy testing in terms of higher fault detection rates. / published_or_final_version / Computer Science / Doctoral / Doctor of Philosophy

A software testing framework for context-aware applications in pervasive computing

Lu, Heng, 陸恒 January 2008 (has links)
published_or_final_version / Computer Science / Doctoral / Doctor of Philosophy

Page generated in 0.1349 seconds