• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Continuum Sensitivity Analysis for Shape Optimization in Incompressible Flow Problems

Turner, Aaron Michael 18 July 2017 (has links)
An important part of an aerodynamic design process is optimizing designs to maximize quantities such as lift and the lift-to-drag ratio, in a process known as shape optimization. It is the goal of this thesis to develop and apply understanding of mixed finite element method and sensitivity analysis in a way that sets the foundation for shape optimization. The open-source Incompressible Flow Iterative Solution Software (IFISS) mixed finite element method toolbox for MATLAB developed by Silvester, Elman, and Ramage is used. Meshes are produced for a backward-facing step problem, using built-in tools from IFISS as well as the mesh generation software Gmsh, and grid convergence studies are performed for both sets of meshes along a sampled data line to ensure that the simulations converge asymptotically with increasing mesh resolution. As a preliminary study of sensitivity analysis, analytic sensitivities of velocity components along the backward-facing step data line to inflow velocity parameters are determined and verified using finite difference and complex step sensitivity values. The method is then applied to pressure drag calculated by integrating the pressure over the surface of a circular cylinder in a freestream flow, and verified and validated using published simulation data and experimental data. The sensitivity analysis study is extended to shape optimization, wherein the shape of a circular cylinder is altered and the sensitivities of the pressure drag coefficient to the changes in the cylinder shape are determined and verified. / Master of Science
2

Continuum Analytical Shape Sensitivity Analysis of 1-D Elastic Bar

Nayak, Soumya Sambit 06 January 2021 (has links)
In this thesis, a continuum sensitivity analysis method is presented for calculation of shape sensitivities of an elastic bar. The governing differential equations and boundary conditions for the elastic bar are differentiated with respect to the shape design parameter to derive the continuum sensitivity equations. The continuum sensitivity equations are linear ordinary differential equations in terms of local or material shape design derivatives, otherwise known as shape sensitivities. One of the novelties of this work is the derivation of three variational formulations for obtaining shape sensitivities, one in terms of the local sensitivity and two in terms of the material sensitivity. These derivations involve evaluating (a) the variational form of the continuum sensitivity equations, or (b) the sensitivity of the variational form of the analysis equations. We demonstrate their implementation for various combinations of design velocity and global basis functions. These variational formulations are further solved using finite element analysis. The order of convergence of each variational formulation is determined by comparing the sensitivity solutions with the exact solutions for analytical test cases. This research focusses on 1-D structural equations. In future work, the three variational formulations can be derived for 2-D and 3-D structural and fluid domains. / Master of Science / When solving an optimization problem, the extreme value of the performance metric of interest is calculated by tuning the values of the design variables. Some optimization problems involve shape change as one of the design variables. Change in shape leads to change in the boundary locations. This leads to a change in the domain definition and the boundary conditions. We consider a 1-D structural element, an elastic bar, for this study. Subsequently, we demonstrate a method for calculating the sensitivity of solution (e.g. displacement at a point) to change in the shape (length for 1-D case) of the elastic bar. These sensitivities, known as shape sensitivities, are critical for design optimization problems. We make use of continuum analytical shape sensitivity analysis to derive three variational formulations to compute these shape sensitivities. The accuracy and convergence of solutions is verified using a finite element analysis code. In future, the approach can be extended to multi-dimensional structural and fluid domain problems.

Page generated in 0.0943 seconds