• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Goldmann and error correcting tonometry prisms compared to intracameral pressure

McCafferty, Sean, Levine, Jason, Schwiegerling, Jim, Enikov, Eniko T. 04 January 2018 (has links)
Background: Compare Goldmann applanation tonometer (GAT) prism and correcting applanation tonometry surface (CATS) prism to intracameral intraocular pressure (IOP), in vivo and in vitro. Methods: Pressure transducer intracameral IOP was measured on fifty-eight (58) eyes undergoing cataract surgery and the IOP was modulated manometrically to 10, 20, and 40 mmHg. Simultaneously, IOP was measured using a Perkins tonometer with a standard GAT prism and a CATS prism at each of the intracameral pressures. Statistical comparison was made between true intracameral pressures and the two prism measurements. Differences between the two prism measurements were correlated to central corneal thickness (CCT) and corneal resistance factor (CRF). Human cadaver eyes were used to assess measurement repeatability. Results: The CATS tonometer prism measured closer to true intracameral IOP than the GAT prism by 1.7+/-2.7 mmHg across all pressures and corneal properties. The difference in CATS and GAT measurements was greater in thin CCT corneas (2.7+/-1.9 mmHg) and low resistance (CRF) corneas (2.8+/-2.1 mmHg). The difference in prisms was negligible at high CCT and CRF values. No difference was seen in measurement repeatability between the two prisms. Conclusion: A CATS prism in Goldmann tonometer armatures significantly improve the accuracy of IOP measurement compared to true intracameral pressure across a physiologic range of IOP values. The CATS prism is significantly more accurate compared to the GAT prism in thin and less rigid corneas. The in vivo intracameral study validates mathematical models and clinical findings in IOP measurement between the GAT and CATS prisms.
2

Goldmann applanation tonometry error relative to true intracameral intraocular pressure in vitro and in vivo

McCafferty, Sean, Levine, Jason, Schwiegerling, Jim, Enikov, Eniko T. 25 November 2017 (has links)
Background: Goldmann applanation tonometry (GAT) error relative to intracameral intraocular pressure (IOP) has not been examined comparatively in both human cadaver eyes and in live human eyes. Futhermore, correlations to biomechanical corneal properties and positional changes have not been examined directly to intracameral IOP and GAT IOP. Methods: Intracameral IOP was measured via pressure transducer on fifty-eight (58) eyes undergoing cataract surgery and the IOP was modulated manometrically on each patient alternately to 10, 20, and 40 mmHg. IOP was measured using a Perkins tonometer in the supine position on 58 eyes and upright on a subset of 8 eyes. Twenty one (21) fresh human cadaver globes were Intracamerally IOP adjusted and measured via pressure transducer. Intracameral IOP ranged between 5 and 60 mmHg. IOP was measured in the upright position with a Goldmann Applanation Tonometer (GAT) and supine position with a Perkins tonometer. Central corneal thickness (CCT) was also measured. Results: The Goldmann-type tonometer error measured on live human eyes was 5.2 +/- 1.6 mmHg lower than intracameral IOP in the upright position and 7.9 +/- 2.3 mmHg lower in the supine position (p <.05). CCT also indicated a sloped correlation to error (correlation coeff. = 0.18). Cadaver eye IOP measurements were 3.1+/-2. 5 mmHg lower than intracameral IOP in the upright position and 5.4+/- 3.1 mmHg in the supine position (p <.05). Conclusion: Goldmann IOP measures significantly lower than true intracameral IOP by approximately 3 mmHg in vitro and 5 mmHg in vivo. The Goldmann IOP error is increased an additional 2.8 mmHg lower in the supine position. CCT appears to significantly affect the error by up to 4 mmHg over the sample size.

Page generated in 0.0952 seconds