• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EFFECTS OF HYPERTONIC SALINE ON RECOVERY OF FUNCTION FOLLOWING CONTROLLED CORTICAL IMPACT BRAIN INJURY

Quigley, Andrea 01 December 2009 (has links)
Hypertonic saline (HS) is an accepted treatment for traumatic brain injury (TBI). However, the behavioral and cognitive consequences following HS administration have not thoroughly been examined. Recent preclinical evidence has suggested that nicotinamide (NAM) is beneficial for recovery of function following TBI. The first study compared the behavioral and cognitive consequences of HS and NAM as competitive therapeutic agents for the treatment of TBI. Following controlled cortical impact (CCI), bolus administrations of NAM (500 mg/kg), 7.5% HS, or 0.9% saline vehicle (1.0 mL/kg) were given at 2, 24, and 48 hrs post-CCI. Behavioral results revealed that animals treated with NAM and HS showed significant improvements in beam walk and locomotor placing compared to the Vehicle group. The Morris water maze (MWM) retrograde amnesia test was conducted on day 12 post-CCI and showed that all groups had significant retention of memory compared to injured, Vehicle-treated animals. Working memory was also assessed on days 18-20 using the MWM. The NAM and Vehicle groups quickly acquired the task; however, HS animals showed no acquisition of this task. Histological examinations revealed that the HS-treated animals lost significantly more cortical tissue than either the NAM or Vehicle-treated animals. HS-treated animals showed a greater loss of hippocampal tissue compared to the other groups. In general, NAM showed a faster rate of recovery than HS without this associated tissue loss. Study 1 suggested that future research into HS should include drug injection time course studies. Multiple injections may be responsible for the notable tissue damage. Therefore, it is possible that fewer injections will result in comparable behavioral recovery and less tissue damage that was observed. Due to the detrimental effects of 7.5% HS on cognition and hippocampal tissue following multiple administration in study 1, the proposed second study sought to study the behavioral and cognitive effects of HS using either single or multiple injection regime. The proposed study entailed a lengthier testing schedule than in study 1 and included the same histological examination to compare the different dosages. Additionally, edema formation was measured 24 hours following each drug endpoint in order to delineate the possible underlying mechanism of the observed deficits. In Study 2, HS tended to improve function on motor, sensorimotor and neurological tasks. Although this was a trend on all tests, animals treated with a single administration of HS overall performed better on all tasks compared to those receiving double or multiple injections. In the retrograde amnesia test, although not significant, the Sham, HS-2, and HS-24 animals showed improvement; whereas, the Vehicle and HS-48 animals showed no improvement in performance. This could possibly be linked to the additional hippocampal tissue loss that was noted in the HS-48 animals. In the working memory paradigm, the HS-2 and Vehicle groups had longer latencies to reach the platform than did the Sham group. However, after the first testing day, there were no significant differences between any of the groups. All animals treated with HS performed at the same rate and their performance either stayed the same over the three day testing period or became worse. It appears these animals were unable to learn and improve in the new memory acquisition task which is comparable to the results found in study 1. In study 1, there were again no observed hippocampal volume differences between the Sham and Vehicle-treated animals. However, there was extensive hippocampal tissue damage observed in all of the HS groups. Furthermore, animals treated with a single administration of HS had less hippocampal loss than those with double or multiple doses. Those animals receiving more than one dose of HS lost significantly more hippocampal tissue than the Vehicle group. The results of study 2 are comparable, and support, the results of study 1. Both studies support the strengths and weakness of HS therapy following TBI. Although there are potential benefits of HS therapy, there are also detrimental risks involved. Cognitive and structural damage could possible occur if the dosage amounts are not closely studied and monitored. Although the use of HS may be beneficial to reduce ICP following TBI, it appears that the use of HS may also lead to direct or indirect tissue loss possibly by chronic cellular dehydration. Stronger or more delineated effects may be noticed using higher doses or concentrations of HS in future studies. However, due to the nature of these results, caution should be advised with the use of all therapeutic usage of HS until further detailed studies are conducted.
2

Tiny but mighty: mesenchymal stem cell-derived extracellular vesicles as a therapeutic in a monkey model of cortical injury

Go, Veronica 17 February 2021 (has links)
Cortical injury, such as that following stroke, is one of the leading causes of long-term disabilities world-wide. While some neuroprotective agents given within hours of stroke can reduce damage, there are currently no neurorestorative therapeutics that can enhance long-term recovery. To address this, we tested Mesenchymal Stem Cell (MSC) derived Extracellular Vesicles (EVs) as a treatment for cortical injury in rhesus monkeys (Macaca mulatta). Monkeys treated with EVs 24 hours after injury and again at 14 days after injury recovered more completely and more rapidly than monkeys given a vehicle control. However, the cellular changes associated with enhanced recovery remained unknown. In this dissertation, it was hypothesized that EVs modulated cells within the brain to enhance recovery after cortical injury. To explore this hypothesis, three specific aims were tested. Aim 1: To determine the effects of EVs on microglial reactivity. Since EVs in this study were derived from MSCs, it was hypothesized that they would have an immunomodulatory effect. Using immunohistochemistry, image analyses, and 3-D reconstruction, we showed that microglia shifted from reactive, damaging phenotypes towards homeostatic, surveilling functions in EV-treated monkeys. These effects correlated with reduced time to recovery, suggesting that reduced microglial reactivity enhanced recovery. Aim 2: To assess the effects of EVs on myelination. Because MSCs have regenerative effects, it was hypothesized that these MSC-derived EVs would improve neurorestoration. Using immunohistochemistry, qRT-PCR, Spectral Confocal Reflectance microscopy, and ELISA, we assessed myelination after cortical injury with and without EV treatment. EVs limited oligodendrocyte damage and increased densities of mature oligodendrocytes to enhance myelin maintenance. These effects correlated with improved recovery, suggesting the importance of myelination in recovery after cortical injury. Aim 3: To assess the neuroprotective role of EVs on infarct volumes. While it was hypothesized that EVs would reduce the densities of inflammatory cells (astrocytes, macrophages/microglia, T-cells), hemosiderin accumulation, and infarct volume, we found that EVs did not alter these endpoints. Collectively, our results suggest that EVs modulated microglia and oligodendrocytes to promote neurorestoration. Overall, these findings demonstrate the therapeutic potential of EVs for neurorestoration after cortical injury.
3

Synaptic remodeling after cortical injury: effects of neuroinflammatory modulation

Zhou, Yuxin 07 December 2020 (has links)
The brain is capable of plasticity, so that the structural and functional loss that are caused by cortical injury may recover. Neuroinflammatory response can greatly influence post-injury recovery by modulating synaptic plasticity. In our previous work, mesenchymal derived exosomes were found to promote functional recovery by converting microglia from a pro-inflammatory state to an anti-inflammatory state in aged rhesus monkeys after cortical injury in the primary motor cortex. In the present project, we demonstrated the effects of exosomes on synaptic changes and synapse-microglia interactions after lesion in the same monkeys. To further investigate the effects of modulating neuroinflammation on synaptic changes after injury, we also investigated dietary curcumin, an anti-inflammatory substance, in a separate group of monkeys. Both treatments showed an effect as neuroinflammatory modulators that reduced the density of microglial markers, Iba- 1/P2RY12. However, the cortical injury induced synaptic loss was reversed by the exosome treatment, whereas the other anti-inflammatory treatment, curcumin, did not show the same effect. Our results are consistent with previous study that cortical injury induced synaptic loss and microglia activation. Exosomes can both reduce inflammation and synapse loss after injury, but curcumin only showed anti-inflammatory effects. Overall, these data suggested that exosomes and curcumin had different mechanisms of how to modulate inflammation and synaptic properties to promote recovery after cortical injury.
4

Neural recovery after cortical injury: effects of MSC derived exosomes in the cervical spinal cord

Calderazzo, Samantha 11 June 2019 (has links)
Stroke is the leading cause of long-term disability costing the United States (US) health care system 34 billion dollars. However, stem cell based therapies have been shown to improve recovery after cortical injury by enhancing neural recovery and modulating immune responses (Lambertsen, Finsen, & Clausen, 2018; Orczykowski et al., 2018; Stonesifer et al., 2017). Specifically, reorganization of the motor circuit at the level of the spinal cord has been shown to improve functional recovery after injury (Christoph Wiessner; Weidner et al., 2001; Lee et al., 2004; Zai et al., 2009). In our study we used a non-human primate (NHP) model to study the neural recovery after cortical injury similar to damage from an ischemic stroke in the motor cortex with or without a systemic treatment of mesenchymal stem cell derived (MSCd) exosomes. We find a robust recovery in motor function within the first few weeks after injury including improved grasp patterns and faster retrieval times during behavioral tasks. Additionally, assessment of the cervical spinal cord (CSC) reveals decreased levels of sprouting axons from ipsilesional corticospinal tract (CST) and MAP2+ synapses in the contralesional ventral horn at 14 weeks post-injury, which correlates with improved retrieval latencies. We hypothesize that MSCd exosomes may encourage an earlier switch to anti-inflammatory and repair processes that reduces secondary damage in the cortex resulting in earlier pruning of axon collaterals and reducing the need for compensatory mechanisms of the spinal cord at 14 weeks post injury.
5

Cell based therapy following cortical injury in Rhesus monkeys reduces secondary injury and enhances neurorestorative processes

Orczykowski, Mary Elizabeth 01 November 2017 (has links)
While physical rehabilitation facilitates some recovery, it is uncommon for patients to recover completely from stroke. Cell based therapies derived from stem cells have produced promising results in enhancing recovery in pre-clinical studies, but the mechanism is not yet completely understood. We previously evaluated human umbilical tissue-derived cells (hUTC) in our non-human primate model of cortical injury, limited to the hand area of primary motor cortex. hUTC treatment, injected intravenously 24 hours after injury, resulted in significantly greater recovery of fine motor function compared to treatment with vehicle. Based on these striking findings, in the current study, we investigated the hypothesis that hUTC treatment leads to functional recovery through reducing cytotoxic responses and enhancing neurorestorative processes following cortical injury. Brain sections were assessed using histological techniques to quantify perilesional oxidative damage, hemosiderin accumulation, microglial activation, Betz cell number, synaptic density, and astrocytic complexity. Brain sections outside of the primary area of injury were also assessed for microglial activation in white matter pathways, cell activation through c-Fos in premotor cortices, and neurogenesis in neurogenic niches. Finally, blood samples from throughout the recovery period and CSF samples from 16 weeks after injury were analyzed for BDNF levels. In the perilesional area, hUTC treatment was associated with lower oxidative damage and hemosiderin accumulation, but not with a difference in microglial activation. hUTC also resulted in a trend toward higher astrocyte complexity and synaptic density in the lesion area, but no difference in ipsilesional Betz cell number. Further, hUTC treatment led to more microglia in white matter pathways, higher c-Fos activation in ventral premotor cortex, and a trend toward higher neurogenesis in the hippocampus. Finally, BDNF levels were higher in blood with hUTC treatment one week after injury, but there was no change beyond one week in blood serum or in CSF, when compared with vehicle. Taken together, these results suggest that hUTC treatment modulates immune responses, limits perilesional damage and cell death, enables neuroplasticity and reorganization, and enhances acute neurotrophic factor secretion. While many cell therapies are currently undergoing clinical trials, this study advances our understanding of the mechanism of cell based therapies.

Page generated in 0.0781 seconds