Spelling suggestions: "subject:"corticothalamic loops"" "subject:"corticosubthalamic loops""
1 |
Mécanismes de la perception du mouvement : implications des boucles cortico-thalamiquesMerabet, Lotfi 05 1900 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal. / Parmi la multitude de fonctions que le système visuel effectue, la
perception du mouvement est l'une des plus importantes. Il a été
clairement démontré qu'il existe des sites cérébraux spécifiques pour la
détection, l'analyse et l'intégration du mouvement. De façon classique, les
mécanismes neurophysiologiques qui sous-tendent ces processus sont
attribués aux aires corticales. Le thalamus quant à lui, est généralement
considéré comme un « relais passif », c'est à dire qui transmet
l'information sensorielle vers le cortex sans modifier le signal entrant.
Le but de ce projet sera de préciser les mécanismes nerveux
impliqués dans la perception et l'intégration du mouvement et plus
précisément, la contribution des régions cérébrales sous-corticales et
corticales intimement liés par des connexions réciproques. Ces régions
sont: le complexe LP-pulvinar, situé dans le thalamus, l'aire extra-striée
postero-médiane suprasylvienne (PMLS) et le cortex ectosylvien visuel
antérieur (AEV); deux régions corticales ayant un rôle spécialisé dans
l'analyse du mouvement.
Les expériences ont été réalisées sur des chats adultes normaux
anesthésiés. Une microélectrode d'enregistrement a été descendue dans
ces trois sites afin d'enregistrer l'activité des neurones. Les réponses
neuronales à des réseaux sinusoïdaux, des patrons texturés (« bruit
visuel ») et des « plaids » ont été caractérisé pour étudier les mécanismes qui sous-tendent l'intégration du mouvement au niveau cellulaire. Afin de
caractériser d'avantage ce lien, l'influence des aires corticales sur les
propriétés thalamiques a été déterminée par inactivation locale réversible
(i.e. micro-injection de l'acide y-aminobutyrique; GABA) ou par inactivation
permanente plus vaste (i.e. ablation chirurgicale).
Les résultats de cette étude se résument comme suit : 1) les
propriétés des réponses neuronales du PMLS au bruit visuel sont
similaires à celles du LP-pulvinar. Ce résultat suggère que les processus
d'analyse impliquant une boucle cortico-thalamique PMLS-LP sont
comparables au niveau cortical et sous-cortical. 2) les neurones du PMLS
et du LP peuvent coder le mouvement relatif entre un objet et son arrièreplan. De plus, l'inactivation réversible du LP perturbe ces réponses au
niveau du PMLS. Ces résultats sont essentiels dans l'établissement d'un
lien fonctionnel entre ces deux régions quant à l'analyse de certains
aspects du mouvement. 3) certains neurones du complexe LP-pulvinar
sont capables d'intégrer l'information directionnelle telle que définie par
des « plaids ». Ceci constitue la première démonstration de propriétés de
haut-niveau en dehors du cortex. De plus, cette découverte suggère que
le LP-pulvinar participe de façon parallèle et en coopération avec le cortex
dans l'analyse de scènes visuelles complexes via l'exploitation des
boucles cortico-thalamiques.
Les résultats de cette étude sont importants non seulement pour
appuyer des notions théoriques novatrices sur le rôle du thalamus, mais aussi dans le but de réévaluer et de préciser les mécanismes nerveux qui
sous-tendent la perception du mouvement et l'intégration sensorielle en
général. / Among the multitude of functions the visual system carries out, the
perception of motion is one of the most important. It has been clearly
demonstrated that the visual system contains numerous specialised areas
implicated in the detection, analysis, and integration of motion. Classically,
the neurophysiological mechanisms underlying these processes have
been uniquely attributed to regions of the cerebral cortex. The thalamus
for its part, has generally been regarded as a passive relay transferring
information to the cortex without any modification of the sensory signal.
The purpose of this study is to investigate the neurophysiological
mechanisms implicated in the perception and integration of motion and
more specifically, delineate the contribution of cortical and subcortical
structures that are intimately related via reciprocal connections. These
areas are: the LP-pulvinar complex; located in the thalamus, and the
extrastriate posteromedial lateral suprasylvian (PMLS) and anterior
ectosylvian visual (AEV) cortical areas; two regions whose role in motion
analysis are well established.
Experiments were carried out on normal adult anaesthetised cats.
A recording microelectrode was descended in one of the aforementioned
areas to record neuronal activity. Neuronal responses to drifting sine-wave
gratings, moving texture patterns ("visual noise"), and "plaid patterns"
were recorded in order to investigate the mechanisms underlying the integration of motion information at the neuronal level. As a continuation of
the study, the influence of cortical motion areas on recorded thalannic
responses will be determined by local reversible deactivation (i.e. microinjection of y-aminobutyric acid; GABA) or by irreversible deactivation (i.e.
surgical ablation).
The results of the study are as follows: 1) Response properties of
PMLS neurons to moving texture patterns are similar to those found in the
LP-pulvinar connplex. These results suggest that motion processing along
both components of the PMLS-LP cortico-thalamic loop is carried out
within a similar envelope of analysis. 2) Neurons in both PMLS and LP are
able to code the relative motion of an object with respect to its
background. Furthermore, reversible deactivation of LP disrupts these
responses in PMLS. These results are important in establishing that both
these areas are functionally linked in the analysis of specific aspects of
motion. 3) The fact that pattern-selective responses to moving plaids can
be found in the LP-pulvinar complex suggests that this area is capable of
carrying out higher-order motion computations. The importance of this
later results is two-fold. First, these findings represent the first
demonstration that higher-order properties exists outside extrastriate
cortical areas. Second, they further suggest that certain thalamic nuclei,
via the establishment of cortico-thalamic loops, participate in parallel and
in co-operation with the cortex in the analysis of complex visual scenes. The results of this study are important not only to reinforce current
and novel theoretical notions regarding the role of the thalamus, but also
in the re-evaluation of the neurophysiological mechanisms involved in
motion perception and sensory integration as a whole.
|
Page generated in 0.0594 seconds