Spelling suggestions: "subject:"cremona"" "subject:"stemona""
1 |
The Plane Quartic Cremona TransformationTitgemeyer, Theodore W. January 1949 (has links)
No description available.
|
2 |
Certain Cremona Transformations of SpaceMcKenna, Donald P. January 1950 (has links)
No description available.
|
3 |
A Special Plane Cubic Cremona TransformationArcher, Lawrence H. January 1951 (has links)
No description available.
|
4 |
The Plane Quartic Cremona TransformationTitgemeyer, Theodore W. January 1949 (has links)
No description available.
|
5 |
Certain Cremona Transformations of SpaceMcKenna, Donald P. January 1950 (has links)
No description available.
|
6 |
A Special Plane Cubic Cremona TransformationArcher, Lawrence H. January 1951 (has links)
No description available.
|
7 |
Cremona : City and civic identity (996-1128)Coleman, E. F. January 1987 (has links)
No description available.
|
8 |
[en] CREMONA TRANSFORMATIONS AS HIPERBOLIC ISOMETRIES / [pt] TRANSFORMAÇÕES DE CREMONA COMO ISOMETRIAS HIPERBÓLICASLUIZE MELLO D URSO VIANNA 06 January 2022 (has links)
[pt] O Grupo de Cremona é o grupo das Transformações birracionais do
plano projetivo e tem um papel muito importante em Geometria Birracional.
Pelo Teorema de Nöether-Castelnuovo (final do século XIX), o Grupo de Cremona
é gerado pelos automorfismos do plano projetivo e pela Transformação
Quadrática Padrão. Apesar de compreendermos bem o grupo de automorfismos
do Plano Projetivo e a Transformação Quadrática Padrão, o estudo do
Grupo de Cremona é bastante desafiador, e sua estrutura ainda não é totalmente
conhecida.
Somente em 2013, Cantat e Lamy provaram que o Grupo de Cremona
não é simples no caso de um corpo algebricamente fechado. Em 2016, Anne
Lonjou provou o mesmo para qualquer corpo. Ambas as provas se baseiam em
uma ação por isometrias do Grupo de Cremona em um espaço hiperbólico de
dimensão infinita. Nosso objetivo será entender essa ação e como ela pode ser
usada no estudo do Grupo de Cremona. / [en] The Cremona Group is the group of Birrational Transformations of the
projective plane and has a very important role in Birrational Geometry. By
the Nöether-Castelnuovo Theorem (late 19th century), the Cremona Group
is generated by the automorphisms of the projective plane and by the Standard
Quadratic Transformation. Although we understand well the group of
automorphisms of the projective plane and the Standard Quadratic Transformation,
the study of the Cremona Group is quite challenging, and its structure
is not yet fully known.
Only in 2013, Cantat and Lamy proved that the Cremona Group is not
simple in the case of an algebraically closed field. In 2016, Anne Lonjou proved
the same for any field. Both proofs are based on an action by isometries of the
Cremona Group in a hyperbolic space of infinite dimension. Our goal will be
to understand this action and how it can be used in the study of the Cremona
Group.
|
9 |
On the action of the group of automorphisms of the affine plane on instantons / Über die Wirkung der Gruppe der Automorphismen der affinen Ebene auf Instantone.Miesener, Michael 21 December 2010 (has links)
No description available.
|
10 |
Efemérní architektura renesančních festivit v kresbě Giulia Campiho / Ephemeral architecture of Renaissance festivies in Giulio Campi drawingsHlušičková, Pavla January 2011 (has links)
This dissertation informs about the life and work cremonese painter, architect and decorator Giulio Campi (c. 1502-1572), who became in 1541 the author of the decorations for the triumphal entry of Emperor Charles V in Cremona. Together with his colleague Camille Boccaccino suggested a number of triumphal arches, whose appearance has been preserved to this day on preparatory drawings. A number of preparatory drawings, which are part of the recently discovered album of the Clara - Aldringen in Teplice, keep the National Gallery in Prague. This thesis concerns the problems of Campi's proposals of the arches - addresses visual effects that might have had an influence on the Campi's drawing expression, features other Campi's surviving drawings from the collection of the European institutions and summarizes a form of the Charles V Trionfo in 1541 and Philip II. Trionfo in 1549 in Cremona.
|
Page generated in 0.0507 seconds