Spelling suggestions: "subject:"cubature"" "subject:"cubatures""
11 |
Special functions of Weyl groups and their continuous and discrete orthogonalityMotlochova, Lenka 04 1900 (has links)
Cette thèse s'intéresse à l'étude des propriétés et applications de quatre familles des fonctions spéciales associées aux groupes de Weyl et dénotées $C$, $S$, $S^s$ et $S^l$. Ces fonctions peuvent être vues comme des généralisations des polynômes de Tchebyshev. Elles sont en lien avec des polynômes orthogonaux à plusieurs variables associés aux algèbres de Lie simples, par exemple les polynômes de Jacobi et de Macdonald. Elles ont plusieurs propriétés remarquables, dont l'orthogonalité continue et discrète. En particulier, il est prouvé dans la présente thèse que les fonctions $S^s$ et $S^l$ caractérisées par certains paramètres sont mutuellement orthogonales par rapport à une mesure discrète. Leur orthogonalité discrète permet de déduire deux types de transformées discrètes analogues aux transformées de Fourier pour chaque algèbre de Lie simple avec racines des longueurs différentes. Comme les polynômes de Tchebyshev, ces quatre familles des fonctions ont des applications en analyse numérique. On obtient dans cette thèse quelques formules de <<cubature>>, pour des fonctions de plusieurs variables, en liaison avec les fonctions $C$, $S^s$ et $S^l$. On fournit également une description complète des transformées en cosinus discrètes de types V--VIII à $n$ dimensions en employant les fonctions spéciales associées aux algèbres de Lie simples $B_n$ et $C_n$, appelées cosinus antisymétriques et symétriques. Enfin, on étudie quatre familles de polynômes orthogonaux à plusieurs variables, analogues aux polynômes de Tchebyshev, introduits en utilisant les cosinus (anti)symétriques. / This thesis presents several properties and applications of four families of Weyl group orbit functions called $C$-, $S$-, $S^s$- and $S^l$-functions. These functions may be viewed as generalizations of the well-known Chebyshev polynomials. They are related to orthogonal polynomials associated with simple Lie algebras, e.g. the multivariate Jacobi and Macdonald polynomials. They have numerous remarkable properties such as continuous and discrete orthogonality. In particular, it is shown that the $S^s$- and $S^l$-functions characterized by certain parameters are mutually orthogonal with respect to a discrete measure. Their discrete orthogonality allows to deduce two types of Fourier-like discrete transforms for each simple Lie algebra with two different lengths of roots. Similarly to the Chebyshev polynomials, these four families of functions have applications in numerical integration. We obtain in this thesis various cubature formulas, for functions of several variables, arising from $C$-, $S^s$- and $S^l$-functions. We also provide a~complete description of discrete multivariate cosine transforms of types V--VIII involving the Weyl group orbit functions arising from simple Lie algebras $C_n$ and $B_n$, called antisymmetric and symmetric cosine functions. Furthermore, we study four families of multivariate Chebyshev-like orthogonal polynomials introduced via (anti)symmetric cosine functions.
|
12 |
Équations différentielles stochastiques : résolubilité forte d'équations singulières dégénérées ; analyse numérique de systèmes progressifs-rétrogrades de McKean-Vlasov / Stochastic differential equations : strong well-posedness of singular and degenerate equations; numerical analysis of decoupled forward backward systems of McKean-Vlasov typeChaudru de Raynal, Paul Éric 06 December 2013 (has links)
Cette thèse traite de deux sujets: la résolubilité forte d'équations différentielles stochastiques à dérive hölderienne et bruit hypoelliptique et la simulation de processus progressifs-rétrogrades découplés de McKean-Vlasov. Dans le premier cas, on montre qu'un système hypoelliptique, composé d'une composante diffusive et d'une composante totalement dégénérée, est fortement résoluble lorsque l'exposant de la régularité Hölder de la dérive par rapport à la composante dégénérée est strictement supérieur à 2/3. Ce travail étend au cadre dégénéré les travaux antérieurs de Zvonkin (1974), Veretennikov (1980) et Krylov et Röckner (2005). L'apparition d'un seuil critique pour l'exposant peut-être vue comme le prix à payer pour la dégénérescence. La preuve repose sur des résultats de régularité de la solution de l'EDP associée, qui est dégénérée, et est basée sur une méthode parametrix. Dans le second cas, on propose un algorithme basé sur les méthodes de cubature pour la simulation de processus progessifs-rétrogrades découplés de McKean-Vlasov apparaissant dans des problèmes de contrôle dans un environnement de type champ moyen. Cet algorithme se divise en deux parties. Une première étape de construction d'un arbre de particules, à dynamique déterministe, approchant la loi de la composante progressive. Cet arbre peut être paramétré de manière à obtenir n'importe quel ordre d'approximation (en terme de pas de discrétisation de l'intervalle). Une seconde étape, conditionnelle à l'arbre, permettant l'approximation de la composante rétrograde. Deux schémas explicites sont proposés permettant un ordre d'approximation de 1 et 2. / This thesis deals with two subjects: the strong well-posedness of stochastic differential equations with Hölder drift and hypoelliptic noise and the simulation of decoupled forward backward stochastic differential equations of McKean-Vlasov type. In the first work, we study a class of degenerate system with hypoelliptic noise. We prove that strong well-posedness holds for this system when the drift is only H\"{o}lder, with Hölder exponent larger than the critical value 2/3. This work extends to the degenerate setting the earlier results obtained by Zvonkin (1974), Veretennikov (1980) and Krylov and Röckner (2005). The existence of a threshold for the Hölder exponent in the degenerate case may be understood as the price to pay to balance the degeneracy of the noise. Our proof relies on regularization properties of the associated PDE, which is degenerate in the current framework and is based on a parametrix method. In the second work, we propose a new algorithm to approach weakly the solution of a McKean-Vlasov stochastic differential equation. Based on the cubature method, the algorithm is deterministic differing from the usual methods based on interacting particles. It can be parametrized in order to obtain a given order of convergence. Then, we construct implementable algorithms to solve decoupled forward backward stochastic differential equations of McKean-Vlasov type, which appear in some stochastic control problems in a mean field environment. We give two algorithms and show that they have convergence of orders one and two under appropriate regularity conditions.
|
13 |
Polinômios ortogonais em várias variáveis /Niime, Fabio Nosse. January 2011 (has links)
Orientador: Cleonice Fátima Bracciali / Banca: Fernando Rodrigo Rafaeli / Banca: Eliana Xavier Linhares de Andrade / Resumo: O objetivo des trabalho é estudar os polinômios ortogonais em várias variáveis com relação a um funcional linear, L e suas propriedades análogas às dos polinômios ortogonais em uma variável, tais como: a relação de três termos, a relação de recorrência de três termos, o teorema de Favard, os zeros comuns ea cubatura gaussiana. Além disso, apresentamos um método para gerar polinômios ortonormais em duas variáveis e alguns exemplos. / Abstract: The aim here is to study the orthogonal polynomials in several variables with respect to a linear functional, L. also, to study its properties analogous to orthogonal polynomials in one variable, such as the theree term relation, the three term recurrence relation, Favard's theorem, the common zeros and Gaussian cubature. A method to generating orthonormal polynomials in two variables and some examples are presented. / Mestre
|
14 |
Polinômios ortogonais em várias variáveisNiime, Fabio Nosse [UNESP] 24 February 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:18Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-02-24Bitstream added on 2014-06-13T20:28:32Z : No. of bitstreams: 1
niime_fn_me_sjrp.pdf: 457352 bytes, checksum: 318f01064234c003baca33cae4183d6d (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo des trabalho é estudar os polinômios ortogonais em várias variáveis com relação a um funcional linear, L e suas propriedades análogas às dos polinômios ortogonais em uma variável, tais como: a relação de três termos, a relação de recorrência de três termos, o teorema de Favard, os zeros comuns ea cubatura gaussiana. Além disso, apresentamos um método para gerar polinômios ortonormais em duas variáveis e alguns exemplos. / The aim here is to study the orthogonal polynomials in several variables with respect to a linear functional, L. also, to study its properties analogous to orthogonal polynomials in one variable, such as the theree term relation, the three term recurrence relation, Favard's theorem, the common zeros and Gaussian cubature. A method to generating orthonormal polynomials in two variables and some examples are presented.
|
15 |
Équations différentielles stochastiques : résolubilité forte d'équations singulières dégénérées ; analyse numérique de systèmes progressifs-rétrogrades de McKean-VlasovChaudru de Raynal, Paul Éric 06 December 2013 (has links) (PDF)
Cette thèse traite de deux sujets: la résolubilité forte d'équations différentielles stochastiques à dérive hölderienne et bruit hypoelliptique et la simulation de processus progressifs-rétrogrades découplés de McKean-Vlasov. Dans le premier cas, on montre qu'un système hypoelliptique, composé d'une composante diffusive et d'une composante totalement dégénérée, est fortement résoluble lorsque l'exposant de la régularité Hölder de la dérive par rapport à la composante dégénérée est strictement supérieur à 2/3. Ce travail étend au cadre dégénéré les travaux antérieurs de Zvonkin (1974), Veretennikov (1980) et Krylov et Röckner (2005). L'apparition d'un seuil critique pour l'exposant peut-être vue comme le prix à payer pour la dégénérescence. La preuve repose sur des résultats de régularité de la solution de l'EDP associée, qui est dégénérée, et est basée sur une méthode parametrix. Dans le second cas, on propose un algorithme basé sur les méthodes de cubature pour la simulation de processus progessifs-rétrogrades découplés de McKean-Vlasov apparaissant dans des problèmes de contrôle dans un environnement de type champ moyen. Cet algorithme se divise en deux parties. Une première étape de construction d'un arbre de particules, à dynamique déterministe, approchant la loi de la composante progressive. Cet arbre peut être paramétré de manière à obtenir n'importe quel ordre d'approximation (en terme de pas de discrétisation de l'intervalle). Une seconde étape, conditionnelle à l'arbre, permettant l'approximation de la composante rétrograde. Deux schémas explicites sont proposés permettant un ordre d'approximation de 1 et 2.
|
16 |
Équations différentielles stochastiques : résolubilité forte d'équations singulières dégénérées ; analyse numérique de systèmes progressifs-rétrogrades de McKean-VlasovChaudru de Raynal, Paul Éric 06 December 2013 (has links) (PDF)
Cette thèse traite de deux sujets: la résolubilité forte d'équations différentielles stochastiques à dérive hölderienne et bruit hypoelliptique et la simulation de processus progressifs-rétrogrades découplés de McKean-Vlasov. Dans le premier cas, on montre qu'un système hypoelliptique, composé d'une composante diffusive et d'une composante totalement dégénérée, est fortement résoluble lorsque l'exposant de la régularité Hölder de la dérive par rapport à la composante dégénérée est strictement supérieur à 2/3. Ce travail étend au cadre dégénéré les travaux antérieurs de Zvonkin (1974), Veretennikov (1980) et Krylov et Röckner (2005). L'apparition d'un seuil critique pour l'exposant peut-être vue comme le prix à payer pour la dégénérescence. La preuve repose sur des résultats de régularité de la solution de l'EDP associée, qui est dégénérée, et est basée sur une méthode parametrix. Dans le second cas, on propose un algorithme basé sur les méthodes de cubature pour la simulation de processus progessifs-rétrogrades découplés de McKean-Vlasov apparaissant dans des problèmes de contrôle dans un environnement de type champ moyen. Cet algorithme se divise en deux parties. Une première étape de construction d'un arbre de particules, à dynamique déterministe, approchant la loi de la composante progressive. Cet arbre peut être paramétré de manière à obtenir n'importe quel ordre d'approximation (en terme de pas de discrétisation de l'intervalle). Une seconde étape, conditionnelle à l'arbre, permettant l'approximation de la composante rétrograde. Deux schémas explicites sont proposés permettant un ordre d'approximation de 1 et 2.
|
17 |
Méthodes numériques probabilistes : problèmes multi-échelles et problèmes de champs moyenGarcia Trillos, Camilo Andrés 12 December 2013 (has links) (PDF)
Cette thèse traite de la solution numérique de deux types de problèmes stochastiques. Premièrement, nous nous intéressons aux EDS fortement oscillantes, c'est-à-dire, les systèmes composés de variables ergodiques évoluant rapidement par rapport aux autres. Nous proposons un algorithme basé sur des résultats d'homogénéisation. Il est défini par un schéma d'Euler appliqué aux variables lentes couplé avec un estimateur à pas décroissant pour approcher la limite ergodique des variables rapides. Nous prouvons la convergence forte de l'algorithme et montrons que son erreur normalisée satisfait un résultat du type théorème limite centrale généralisé. Nous proposons également une version extrapolée de l'algorithme ayant une meilleure complexité asymptotique en satisfaisant les mêmes propriétés que la version originale. Ensuite, nous étudions la solution des EDS de type McKean-Vlasov (EDSPR-MKV) associées à la solution de certains problèmes de contrôle sous un environnement formé d'un grand nombre de particules ayant des interactions du type champ-moyen. D'abord, nous présentons un nouvel algorithme, basé sur la méthode de cubature sur l'espace de Wiener, pour approcher faiblement la solution d'une EDS du type McKean-Vlasov. Il est déterministe et peut être paramétré pour atteindre tout ordre de convergence souhaité. Puis, en utilisant ce nouvel algorithme, nous construisons deux schémas pour résoudre les EDSPR-MKV découplées et nous montrons que ces schémas ont des convergences d'ordres un et deux. Enfin, nous considérons le problème de réduction de la complexité de la méthode présentée tout en respectant la vitesse de convergence énoncée.
|
18 |
Numerical methods for approximating solutions to rough differential equationsGyurko, Lajos Gergely January 2008 (has links)
The main motivation behind writing this thesis was to construct numerical methods to approximate solutions to differential equations driven by rough paths, where the solution is considered in the rough path-sense. Rough paths of inhomogeneous degree of smoothness as driving noise are considered. We also aimed to find applications of these numerical methods to stochastic differential equations. After sketching the core ideas of the Rough Paths Theory in Chapter 1, the versions of the core theorems corresponding to the inhomogeneous degree of smoothness case are stated and proved in Chapter 2 along with some auxiliary claims on the continuity of the solution in a certain sense, including an RDE-version of Gronwall's lemma. In Chapter 3, numerical schemes for approximating solutions to differential equations driven by rough paths of inhomogeneous degree of smoothness are constructed. We start with setting up some principles of approximations. Then a general class of local approximations is introduced. This class is used to construct global approximations by pasting together the local ones. A general sufficient condition on the local approximations implying global convergence is given and proved. The next step is to construct particular local approximations in finite dimensions based on solutions to ordinary differential equations derived locally and satisfying the sufficient condition for global convergence. These local approximations require strong conditions on the one-form defining the rough differential equation. Finally, we show that when the local ODE-based schemes are applied in combination with rough polynomial approximations, the conditions on the one-form can be weakened. In Chapter 4, the results of Gyurko & Lyons (2010) on path-wise approximation of solutions to stochastic differential equations are recalled and extended to the truncated signature level of the solution. Furthermore, some practical considerations related to the implementation of high order schemes are described. The effectiveness of the derived schemes is demonstrated on numerical examples. In Chapter 5, the background theory of the Kusuoka-Lyons-Victoir (KLV) family of weak approximations is recalled and linked to the results of Chapter 4. We highlight how the different versions of the KLV family are related. Finally, a numerical evaluation of the autonomous ODE-based versions of the family is carried out, focusing on SDEs in dimensions up to 4, using cubature formulas of different degrees and several high order numerical ODE solvers. We demonstrate the effectiveness and the occasional non-effectiveness of the numerical approximations in cases when the KLV family is used in its original version and also when used in combination with partial sampling methods (Monte-Carlo, TBBA) and Romberg extrapolation.
|
19 |
Zkoumání konektivity mozkových sítí pomocí hemodynamického modelování / Exploring Brain Network Connectivity through Hemodynamic ModelingHavlíček, Martin January 2012 (has links)
Zobrazení funkční magnetickou rezonancí (fMRI) využívající "blood-oxygen-level-dependent" efekt jako indikátor lokální aktivity je velmi užitečnou technikou k identifikaci oblastí mozku, které jsou aktivní během percepce, kognice, akce, ale také během klidového stavu. V poslední době také roste zájem o studium konektivity mezi těmito oblastmi, zejména v klidovém stavu. Tato práce předkládá nový a originální přístup k problému nepřímého vztahu mezi měřenou hemodynamickou odezvou a její příčinou, tj. neuronálním signálem. Zmíněný nepřímý vztah komplikuje odhad efektivní konektivity (kauzálního ovlivnění) mezi různými oblastmi mozku z dat fMRI. Novost prezentovaného přístupu spočívá v použití (zobecněné nelineární) techniky slepé dekonvoluce, což dovoluje odhad endogenních neuronálních signálů (tj. vstupů systému) z naměřených hemodynamických odezev (tj. výstupů systému). To znamená, že metoda umožňuje "data-driven" hodnocení efektivní konektivity na neuronální úrovni i v případě, že jsou měřeny pouze zašumělé hemodynamické odezvy. Řešení tohoto obtížného dekonvolučního (inverzního) problému je dosaženo za použití techniky nelineárního rekurzivního Bayesovského odhadu, který poskytuje společný odhad neznámých stavů a parametrů modelu. Práce je rozdělena do tří hlavních částí. První část navrhuje metodu k řešení výše uvedeného problému. Metoda využívá odmocninové formy nelineárního kubaturního Kalmanova filtru a kubaturního Rauch-Tung-Striebelova vyhlazovače, ovšem rozšířených pro účely řešení tzv. problému společného odhadu, který je definován jako simultánní odhad stavů a parametrů sekvenčním přístupem. Metoda je navržena především pro spojitě-diskrétní systémy a dosahuje přesného a stabilního řešení diskretizace modelu kombinací nelineárního (kubaturního) filtru s metodou lokální linearizace. Tato inverzní metoda je navíc doplněna adaptivním odhadem statistiky šumu měření a šumů procesu (tj. šumů neznámých stavů a parametrů). První část práce je zaměřena na inverzi modelu pouze jednoho časového průběhu; tj. na odhad neuronální aktivity z fMRI signálu. Druhá část generalizuje navrhovaný přístup a aplikuje jej na více časových průběhů za účelem umožnění odhadu parametrů propojení neuronálního modelu interakce; tj. odhadu efektivní konektivity. Tato metoda představuje inovační stochastické pojetí dynamického kauzálního modelování, což ji činí odlišnou od dříve představených přístupů. Druhá část se rovněž zabývá metodami Bayesovského výběru modelu a navrhuje techniku pro detekci irelevantních parametrů propojení za účelem dosažení zlepšeného odhadu parametrů. Konečně třetí část se věnuje ověření navrhovaného přístupu s využitím jak simulovaných tak empirických fMRI dat, a je významných důkazem o velmi uspokojivých výsledcích navrhovaného přístupu.
|
Page generated in 0.0438 seconds