Spelling suggestions: "subject:"culex quinquefasciatus"" "subject:"culex quinquefasciata""
1 |
Presence of Wolbachia, A Potential Biocontrol Agent: Screening for Vertebrate Blood Meal Source and West Nile Virus in Mosquitoes in the North Texas RegionAdiji, Olubu Adeoye 08 1900 (has links)
West Nile virus (WNV) is a geographically endemic mosquito-borne flavivirus that has spread across the United States infecting birds, mosquitos, humans, horses and other mammals. The wide spread nature of this virus is due to the ability of the mosquito vector to persist in broad, ecological diverse environments across the United States. In this study, mosquito populations in North Texas region were sampled for detection of Wolbachia, blood meal source, and WNV. The ultimate goal of this study was to examine the potential of a biocontrol agent, Wolbachia sp. that colonizes the hindgut of various insects, including mosquitos, as a natural means to interrupt virus transmission from mosquitos to other hosts, including humans. In Australia, Wolbachia sp. from fruit flies (Drosophila melanogaster) have been successfully used to block transmission of a similar pathogenic virus from mosquitos responsible for transmission of Dengue fever.
Here, mosquitoes were collected using CDC style Gravid Traps in Denton, Texas, from October 2012 through September 2014. Collected mosquitoes were identified, sexed, and categorized as to the amount of host blood in their alimentary system using a Zeiss Axio Zoom microscope (Carl Zeiss Microscopy, LLC, Thornwood, NY). Culex quinquefaciatus was the dominant blood engorged species collected. Smaller populations of Culex tarsalis and Aedes albopictus, another known vector for WNV were also collected. Mosquito larva were also collected from the UNT water research field station and reared to adults. Cx. tarsalis was the dominant mosquito taken from this habitat.
Samples of Cx. quinquefasciatus, Cx. tarsalis and A. albopictus were analyzed for Wolbachia sp. and to identify host blood in the mosquito alimentary system. Total DNA extraction from the pool of mosquito samples was by both commercially available DNA extraction kits (Qiagen, Valencia, CA) and salt extraction technique. Polymerase chain reaction (PCR) was used to amplify and identify Wolbachia sp. 16SrDNA and mitochondrial DNA from vertebrate blood. The maternally inherited endosymbiont, Wolbachia, were found to be uniformly distributed across the mosquitoes sampled in this study. Blood meal analysis by PCR showed that Cx. quinquefaciatus fed more on birds than on mammalian blood sources based on the previously developed primers used in this study.
|
2 |
Expressão heteróloga da toxina Cry 11Aa de Bacillus thuringiensis (Berliner, 1919) var. israelensis em Escherichia coli (Escherich, 1885), visando o controle biológico / Expressão heteróloga da toxina Cry 11Aa de Bacillus thuringiensis (Berliner, 1919) var. israelensis em Escherichia coli (Escherich, 1885), visando o controle biológicoLara, Ana Paula de Souza Stori de 08 March 2013 (has links)
Made available in DSpace on 2014-08-20T14:31:29Z (GMT). No. of bitstreams: 1
dissertacao_ana_paula_de_lara.pdf: 4627911 bytes, checksum: 887ee69dd56b73509c1a603e3b25aebd (MD5)
Previous issue date: 2013-03-08 / Bacillus thuringiensis (Bt) is a Gram-positive bacteria, ubiquitous, facultative anaerobic, and form spores. During sporulation produce a parasporal crystals inclusion. Within
these inclusions there are δ-endotoxin proteins well known for its insecticides proprieties. Among them, the Cry (crystal) is wide employed for biological control of plagues. The δ-endotoxin has an advantage of been more specific than chemical insecticides, thus been consider more favorable for the environment. The aim of this study was to obtain the Cry 11Aa recombinant protein of Bacillus thuringiensis var.
israelensis in Escherichia coli, active for use in biocontrol. Two expression E. coli strains were tested: BL 21 (DE3) C41 and BL 21 (DE3) Ril. The protein Cry 11Aa was expressed and secreted in a soluble form by the two strains. The expression was demonstrated by Western Blot using anti-histidin monoclonal antibody. The strain BL 21 (DE3) C41 express the protein Cry 11Aa ~3.6 times more than the strain Rill, and
showed a biologic efficiency of 95% of mortality for Culex quinquefaciatus larvae. The data obtained in this study suggest that the protein recombinant Cry 11Aa expressed
in E. coli has a potential to be used in biological control. / Bacillus thuringiensis (Bt) é uma bactéria Gram-positiva, de ocorrência ubíqua, anaeróbica facultativa, formadora de esporos. Produz cristais, como inclusões parasporal durante a esporulação. Estas inclusões contêm proteínas chamadas de
δ-endotoxinas, que são bem conhecidas pelas suas propriedades inseticidas. Dentre elas as toxinas Cry (crystal) são largamente empregadas no controle biológico de
pragas. As δ-endotoxinas têm a vantagem de serem mais específicos do que os inseticidas químicos sintéticos, portanto, são considerados como agentes de controles favoráveis ao meio ambiente. O objetivo deste estudo foi a obtenção da
proteína Cry 11Aa recombinante de Bacillus thuringiensis var. israelensis em Escherichia coli, ativa, para utilização no controle biológico.Duas cepas de E. coli de expressão foram
testadas: BL 21 (DE3) C41 e BL 21 (DE3) Ril. A proteína Cry 11Aa foi expressa e secretada na forma solúvel pelas duas cepas. A expressão foi demonstrada por Western blot utilizando-se anticorpo monoclonal anti-histidina. A cepa BL 21 (DE3) C41 expressou a proteína Cry 11Aa ~3.6 vezes mais que a cepa BL 21 (DE3) Ril, e apresentou, em teste biológico, uma eficácia de 95% de mortalidade sobre larvas de Culex quinquefaciatus. Com os dados obtidos neste trabalho podemos sugerir que a proteína recombinante Cry 11Aa expressa em E. coli é um potencial candidato para ser utilizado no controle biológico.
|
Page generated in 0.0923 seconds