Spelling suggestions: "subject:"cyberphysical"" "subject:"bothphysical""
171 |
VR/AR and Digital Twin for improvedvisualization of overview and debugging of live hardware in next generationsindustry.Karlsson, Joakim, Jansson Room, Kristian January 2020 (has links)
This thesis describes the implementation of a Digital Twin tied to Virtual Reality environment thatcould, by easy means be expanded to Augmented Reality-solution. The field is of interest due to thefact that movement into Industry 4.0 puts the traditional operator in a new seat of work. Previoushands-on tasks are replaced with system monitoring and supervision roles. New interconnectedindustrial hardware allows for extensive data collection, while interactive technology like VR/ARhelps monitoring live systems in completely new manners. An operator can overview and debugindustrial systems while not even being in close proximity of the physical system. This provides theopportunity to increase the level of system information presented to the operator. The Cyber PhysicalFactory created by Festo was targeted to be represented as a digital twin. The question asked: What arethe advantages and/or disadvantages of monitoring and troubleshooting a Festo CP-Factory by meansof a digital twin-driven visualization? proved to be extensive and the work included mapping ofimportant factory data and DRM-research to find visual improvements between the provided solutionsby Festo, and an implemented digital twin. The solution we produced focuses on overview anddebugging and it connects to OPC-servers on each mapped module of the Cyber Physical Factory andacquires the data. This data can then be used to expand, test and debug previous sessions. Each realimplementation of a factory has some type of logging of data, our solution allows visualization of thoselog entries as close to reality as possible, reducing the need to search databases for indications ofproblems. The Unity 3D created software also handles dynamic connections where the operator canmodify which nodes to connect to in an intuitive way, this enables our software to abstract and modifyinformation outside of the source code.
|
172 |
A CYBERSECURITY FRAMEWORK FOR WIRELESS-CONTROLLED SMART BUILDINGSFeng Wu (6313133) 12 October 2021 (has links)
<p>Due
to the rapid development of wireless communication and network technology, more
and more wireless devices (e.g., Siemens, Lutron, etc.) are used in residential
and commercial buildings. The wireless system has many advantages that
traditional wired-based systems do not have, such as time-saving deployment and
easy maintenance. However, the wireless system is also vulnerable to
cyber-attacks since the data packets are transmitted by radio waves rather than
by physical medium. The current cyber detection system (e.g., Intrusion
detection system) monitors the data traffic to identify the anomalies in the
network. However, it is unable to detect the attacks that tamper with the
control logic or operating parameters, which results in the malfunction of the
system. This thesis developed an integrated, cyber-security framework for
cyber-attack detection in smart buildings.</p>
<p>The
objective of this research is to develop an integrated cyber-security framework
for wireless-based smart building systems to protect buildings from the
cyber-attacks. The wireless-based smart building systems are operated and
controlled by either a two-position or continuous controlled approach. The
efforts in this study have developed a cyber-security framework to deal with both
two-position control and continuous control. For the two-position controlled
smart buildings, the developed cyber-security framework integrates the data and
models of both cyber and physical domains of building systems to detect faults,
abnormal operations, and cyber attacks. The cyber-security framework developed
for the continuous controlled system combines a data-driven model for detecting
the faults of sensor measurements and a physical model based on engineering
principle (e.g., laws of thermodynamics or control logic) to detect the anomaly
of system operation.</p>
<p>To
develop the cyber-security frameworks, the testbeds corresponding to the
two-position and continuous wireless systems were constructed for
attack-oriented tests. A wireless-based lighting system for smart homes was
used as the testbed for the study of the two-position control. It has a
wireless occupancy sensor, an actuator for the light switch, and an open-source
operating platform (OpenHAB) for system control and monitor. The platform of
the wireless is the ZigBee. An indoor shading system at a living lab in new
Herrick building at Purdue University was utilized as the testbed for the study
of the continuous controlled system. The indoor shading system exploits the roller
shades to block the excess daylighting to provide an acceptable illuminance
condition for occupants. The shading system uses the wireless illuminance
sensor, weather condition, and wire-based controller to automatically operate
the shades for the acceptable illuminance. </p>
<p>The
study implemented designed cyber-attacks to validate the effectiveness of the
developed frameworks. The final results show that the developed two models were
able to detect the attacks effectively (95-100% attacks identified and
isolated). The abnormal operations tested in two-position control system were
identified when an abnormal state was triggered, or the modelled state and real
state did not match in the finite state machine model developed. For continuous
control, the abnormal operations were detected when there is a significant
deviation between the modelled measurement and the actual measurement. The
cybersecurity framework developed in the thesis demonstrates an effective
approach for detecting system faults caused by attacks. The frameworks could be
widely used for other different building systems and beyond buildings, such as
transportation or industrial manufacturing systems.</p>
|
173 |
Scheduling of a Cyber-Physical Sytem Simulation / Ordonnancement d’une Simulation de Systeme Cyber-PhysiqueDeschamps, Henrick 15 July 2019 (has links)
Les travaux menés dans cette thèse de doctorat s’inscrivent dans le cadre d’un effort pluslarge d’automatisation des systèmes de simulation industriels. Dans l’industrie aéronautique,et plus particulièrement au sein d’Airbus, l’application historique de la simulation est laformation des pilotes. Il existe aussi des utilisations plus récentes dans la conception desystèmes, ainsi que dans l’intégration de ces systèmes. Ces dernières utilisations exigent untrès haut degré de représentativité, là où historiquement le plus important était le ressenti dupilote. Les systèmes sont aujourd’hui divisés en plusieurs sous-systèmes qui sont conçus, implémentéset validés indépendamment, afin de maintenir leur contrôle malgré l’augmentationde leurs complexités et la réduction des temps de mise sur le marché. Airbus maîtrise déjà lasimulation de ces sous-systèmes, ainsi que leurs intégrations en simulation. Cettemaîtriseest empirique, les spécialistes de la simulation reprennent l’ordonnancement d’intégrationsprécédentes, et l’adaptent à une nouvelle intégration. C’est un processus qui peut parfois êtrechronophage, et qui peut introduire des erreurs. Les tendances actuelles de l’industrie sont à la flexibilité des moyens de production, àl’intégration d’outils logistiques permettant le suivi, à l’utilisation d’outils de simulation enproduction, et à l’optimisation des ressources. Les produits sont de plus en plus souvent desitérations d’anciens produits améliorés, et les tests et simulations intégrés à leurs cycles de vie.Travailler de manière empirique dans une industrie qui nécessite de la flexibilité estune contrainte, et il est aujourd’hui important de facilement modifier des simulations. Laproblématique est donc de mettre en place des méthodes et outils permettant a priori degénérer des ordonnancements de simulations représentatifs.Afin de répondre à ce problème, nous avons mis en place une méthode permettant de décrireles composants d’une simulation, la manière dont cette simulation pourra être exécutée,ainsi que des fonctions permettant de générer des ordonnancements. Par la suite, nous avonsimplémenté un outil afin d’automatiser la recherche d’ordonnancement, en se basant sur desheuristiques. Enfin nous avons testé et vérifié notre méthode et outils sur des cas d’étudesacadémiques et industriels. / The work carried out in this Ph.D. thesis is part of a broader effort to automate industrialsimulation systems. In the aeronautics industry, and more especially within Airbus, thehistorical application of simulation is pilot training. There are also more recent uses in thedesign of systems, as well as in the integration of these systems. These latter applicationsrequire a very high degree of representativeness, where historically the most important factorhas been the pilot’s feeling. Systems are now divided into several subsystems that are designed, implemented andvalidated independently, in order tomaintain their control despite the increase in their complexity,and the reduction in time-to-market. Airbus already has expertise in the simulationof these subsystems, as well as their integration into a simulation. This expertise is empirical;simulation specialists use the previous integrations schedulings and adapt it to a newintegration. This is a process that can sometimes be time-consuming and can introduce errors.The current trends in the industry are towards flexible production methods, integrationof logistics tools for tracking, use of simulation tools in production, as well as resourcesoptimization. Products are increasingly iterations of older, improved products, and tests andsimulations are increasingly integrated into their life cycles. Working empirically in an industry that requires flexibility is a constraint, and nowadays itis essential to facilitate the modification of simulations. The problem is, therefore, to set upmethods and tools allowing a priori to generate representative simulation schedules.In order to solve this problem, we have developed a method to describe the elementsof a simulation, as well as how this simulation can be executed, and functions to generateschedules. Subsequently, we implemented a tool to automate the scheduling search, based onheuristics. Finally, we tested and verified our method and tools in academic and industrialcase studies.
|
174 |
Cyber-Physical Production Systems - Herausforderungen bei Modellierung und Informationsmanagement [Präsentationsfolien]: EEE Dresden 30.06.2016Gerhard, Detlef January 2016 (has links)
No description available.
|
175 |
Innovationsforum open4INNOVATION2012 regional kooperativ-global innovativ: Beiträge zum FachforumGräning, André, Röttger, Simone 27 June 2012 (has links)
Die Zukunft liegt bereits heute schon im Internet der Dinge, Daten, Dienste und Personen. Informations- und Kommunikationstechnologien (IKT) beeinflussen vermehrt die alltäglichen Abläufe, übernehmen im Ernstfall lebenserhaltende Körperfunktionen, unterstützen Arbeits- und Produktionsprozesse und halten Einzug in unsere Wohnbereiche. Dabei rückt der Gedanke einer anwendungsnahen und integrierten Sicht von Software zunehmend in den Vordergrund und verlangt deshalb interdisziplinäre Ansätze. Eine frühzeitige technische Abstimmung zwischen Soft- und Hardware sowie unterschiedlichen technischen Öko-Systemen wird dabei notwendiger und fordert Politik, Wissenschaft und Wirtschaft in gleichem Maße.
Das Innovationsforum open4INNOVATION2012 am 9.Mai bot dazu Praktikern und Akademikern eine Plattform für den interdisziplinären und fachbereichsübergreifenden Austausch zu neuen und anwendungsnahen IKT-Ansätzen. Unter dem Motto regional kooperativ, global innovativ galt es dabei regional politische, wirtschaftliche und wissenschaftliche Kompetenzen zu bündeln, um globale Märkte erfolgreich zu bestreiten.
In dem vorliegenden Tagungsband finden Sie die Beiträge des Fachforums, welches ein Hauptformat der Veranstaltung darstellte. Zusätzlich kam es auf dem Innovationsforum open4INNOVATION2012 erstmals zur aktiven Vernetzung sächsischer Forschergruppen, deren wissenschaftlicher Schwerpunkt die Robotik ist. Auf diesem ersten sächsischen Robotertreffen stand vor allem die Arbeit mit humanoiden Robotern im Mittelpunkt.
|
176 |
Self-managed Workflows for Cyber-physical SystemsSeiger, Ronny 03 December 2018 (has links)
Workflows are a well-established concept for describing business logics and processes in web-based applications and enterprise application integration scenarios on an abstract implementation-agnostic level. Applying Business Process Management (BPM) technologies to increase autonomy and automate sequences of activities in Cyber-physical Systems (CPS) promises various advantages including a higher flexibility and simplified programming, a more efficient resource usage, and an easier integration and orchestration of CPS devices. However, traditional BPM notations and engines have not been designed to be used in the context of CPS, which raises new research questions occurring with the close coupling of the virtual and physical worlds. Among these challenges are the interaction with complex compounds of heterogeneous sensors, actuators, things and humans; the detection and handling of errors in the physical world; and the synchronization of the cyber-physical process execution models. Novel factors related to the interaction with the physical world including real world obstacles, inconsistencies and inaccuracies may jeopardize the successful execution of workflows in CPS and may lead to unanticipated situations.
This thesis investigates properties and requirements of CPS relevant for the introduction of BPM technologies into cyber-physical domains. We discuss existing BPM systems and related work regarding the integration of sensors and actuators into workflows, the development of a Workflow Management System (WfMS) for CPS, and the synchronization of the virtual and physical process execution as part of self-* capabilities for WfMSes. Based on the identified research gap, we present concepts and prototypes regarding the development of a CPS WFMS w.r.t. all phases of the BPM lifecycle. First, we introduce a CPS workflow notation that supports the modelling of the interaction of complex sensors, actuators, humans, dynamic services and WfMSes on the business process level. In addition, the effects of the workflow execution can be specified in the form of goals defining success and error criteria for the execution of individual process steps. Along with that, we introduce the notion of Cyber-physical Consistency. Following, we present a system architecture for a corresponding WfMS (PROtEUS) to execute the modelled processes-also in distributed execution settings and with a focus on interactive process management. Subsequently, the integration of a cyber-physical feedback loop to increase resilience of the process execution at runtime is discussed. Within this MAPE-K loop, sensor and context data are related to the effects of the process execution, deviations from expected behaviour are detected, and compensations are planned and executed. The execution of this feedback loop can be scaled depending on the required level of precision and consistency. Our implementation of the MAPE-K loop proves to be a general framework for adding self-* capabilities to WfMSes. The evaluation of our concepts within a smart home case study shows expected behaviour, reasonable execution times, reduced error rates and high coverage of the identified requirements, which makes our CPS~WfMS a suitable system for introducing workflows on top of systems, devices, things and applications of CPS.:1. Introduction 15
1.1. Motivation 15
1.2. Research Issues 17
1.3. Scope & Contributions 19
1.4. Structure of the Thesis 20
2. Workflows and Cyber-physical Systems 21
2.1. Introduction 21
2.2. Two Motivating Examples 21
2.3. Business Process Management and Workflow Technologies 23
2.4. Cyber-physical Systems 31
2.5. Workflows in CPS 38
2.6. Requirements 42
3. Related Work 45
3.1. Introduction 45
3.2. Existing BPM Systems in Industry and Academia 45
3.3. Modelling of CPS Workflows 49
3.4. CPS Workflow Systems 53
3.5. Cyber-physical Synchronization 58
3.6. Self-* for BPM Systems 63
3.7. Retrofitting Frameworks for WfMSes 69
3.8. Conclusion & Deficits 71
4. Modelling of Cyber-physical Workflows with Consistency Style Sheets 75
4.1. Introduction 75
4.2. Workflow Metamodel 76
4.3. Knowledge Base 87
4.4. Dynamic Services 92
4.5. CPS-related Workflow Effects 94
4.6. Cyber-physical Consistency 100
4.7. Consistency Style Sheets 105
4.8. Tools for Modelling of CPS Workflows 106
4.9. Compatibility with Existing Business Process Notations 111
5. Architecture of a WfMS for Distributed CPS Workflows 115
5.1. Introduction 115
5.2. PROtEUS Process Execution System 116
5.3. Internet of Things Middleware 124
5.4. Dynamic Service Selection via Semantic Access Layer 125
5.5. Process Distribution 126
5.6. Ubiquitous Human Interaction 130
5.7. Towards a CPS WfMS Reference Architecture for Other Domains 137
6. Scalable Execution of Self-managed CPS Workflows 141
6.1. Introduction 141
6.2. MAPE-K Control Loops for Autonomous Workflows 141
6.3. Feedback Loop for Cyber-physical Consistency 148
6.4. Feedback Loop for Distributed Workflows 152
6.5. Consistency Levels, Scalability and Scalable Consistency 157
6.6. Self-managed Workflows 158
6.7. Adaptations and Meta-adaptations 159
6.8. Multiple Feedback Loops and Process Instances 160
6.9. Transactions and ACID for CPS Workflows 161
6.10. Runtime View on Cyber-physical Synchronization for Workflows 162
6.11. Applicability of Workflow Feedback Loops to other CPS Domains 164
6.12. A Retrofitting Framework for Self-managed CPS WfMSes 165
7. Evaluation 171
7.1. Introduction 171
7.2. Hardware and Software 171
7.3. PROtEUS Base System 174
7.4. PROtEUS with Feedback Service 182
7.5. Feedback Service with Legacy WfMSes 213
7.6. Qualitative Discussion of Requirements and Additional CPS Aspects 217
7.7. Comparison with Related Work 232
7.8. Conclusion 234
8. Summary and Future Work 237
8.1. Summary and Conclusion 237
8.2. Advances of this Thesis 240
8.3. Contributions to the Research Area 242
8.4. Relevance 243
8.5. Open Questions 245
8.6. Future Work 247
Bibliography 249
Acronyms 277
List of Figures 281
List of Tables 285
List of Listings 287
Appendices 289
|
177 |
Sensors for intelligent and reliable components / Sensorer för intelligenta och tillförlitliga komponenterLundman, Pontus January 2020 (has links)
One way to tackle the climate change society is facing today is through the change to renewable energy sources, such as wind power. Today, a trend when it comes to technology is that products are evolving into becoming more cyber-physical systems (CPS) by integrating functions realized with mechanics, control and communication. One challenge for CPS is to find cost-effective and reliable sensor solutions. The purpose of this project is to lay the foundations for an intelligent CPS with the help of sensors and condition monitoring methods that, with further development, can reduce the downtime of a wind turbine. Thus, the reliability of the wind turbine and the profitability of its investors increase. The aim of the work is to develop an overall concept for a sensor package with analysis methods that enable real-time diagnosis in the gearbox of a wind turbine. This sensor package should be able to monitor the most common problems that arise in the gearbox and it should also be able to be used as a basis for a possible development of a CPS in the future. The work is based on an information search that enables the creation of a list of requirements. This then forms the basis for concept generation through the use of a function/means tree and concept evaluation through the use of elimination matrix, weight determination matrix and weighted criteria matrix. The work concludes that there are four main types of failures that occur in the gearbox and that should be monitored. These are scuffing, micropitting, propagation of cracks and bearing failure. The final concept uses vibration analysis for monitoring of micropitting, crack propagation and bearing failure, oil analysis for monitoring of scuffing and micropitting and temperature measurement for monitoring of scuffing and bearing failure. For vibration analysis, piezoelectric sensors are used, for oil analysis electromagnetic sensors and for temperature measurement resistance thermometers are used. The work finds that it is appropriate in this day and age to use well-established methods for condition monitoring in the gearbox of wind turbines. / Ett sätt att tackla de klimatförändringar samhället står inför idag är genom omställningen till förnybara energikällor, såsom vindkraft. Idag är en trend när det kommer till teknik att produkter utvecklas till att allt mer bli cyberfysiska system (CPS) genom att de integrerar funktioner som realiseras med mekanik, reglering och kommunikation. En utmaning för CPS är att hitta kostnadseffektiva och tillförlitliga sensorlösningar. Syftet med detta projekt är att lägga grunden till ett intelligent CPS med hjälp av sensorer och tillståndsövervakningsmetoder som med vidare utveckling ska kunna minska stilleståndstiden hos ett vindkraftverk. Således ökar tillförlitligheten hos vindkraftverket samt räntabiliteten för investerarna av dessa. Arbetets mål är att utveckla ett övergripande koncept för ett sensorpaket med analysmetoder som möjliggör realtidsdiagnos i växellådan hos ett vindkraftverk. Detta sensorpaket ska kunna övervaka de vanligaste problemen som uppstår i växellådan och ska kunna användas som grund för eventuell utveckling av ett CPS i framtiden. Arbetet grundas i en informationssökning som möjliggör skapandet av en kravspecifikation. Denna ligger sedan till grund för konceptgenerering genom användandet av funktions/medelträd samt konceptutvärdering genom användandet av elimineringsmatris, viktbestämningsmatris samt kriterieviktsmetoden. I arbetet framkommer att det finns fyra huvudsakliga skador som uppkommer i växellådan och som bör övervakas. Dessa är scuffing, mikropitting, sprickpropagering och lagerhaveri. Det slutgiltiga konceptet använder vibrationsanalys för övervakning av mikropitting, sprickpropagering och lagerhaveri, oljeanalys för övervakning av scuffing och mikropitting samt temperaturmätning för övervakning av scuffing och lagerhaveri. Vid vibrationsanalys används piezoelektriska sensorer, vid oljeanalys elektromagnetiska sensorer och för temperaturmätning resistanstermometrar. Arbetet konstaterar att det i dagsläget är lämpligt att använda väletablerade metoder för tillståndsövervakning i växellådan hos vindkraftverk.
|
178 |
A Resource and Criticality Aware Cyber-Physical System with Robots for Precision Animal AgricultureUpinder Kaur (16642614) 26 July 2023 (has links)
<p>Precision livestock farming (PLF) has emerged as a solution to address global challenges related to food scarcity, increasing demand for animal products, slim profit margins in livestock production, and growing societal concerns regarding farm animal welfare. By offering individualized care for animals, PLF aims to provide labor savings, enhanced monitoring, and improved control capabilities within complex farming systems, enabled by digital technologies. The adoption of an individual-centric approach to farming through PLF is anticipated to enhance farm productivity and ensure ethical treatment of animals while mitigating concerns associated with labor shortages in modern intensive farming operations. Real-time continuous monitoring of each animal enables precise and accurate health and well-being management. However, to achieve these benefits, large-scale animal farms require commercially viable technological solutions for individualized care and welfare. Cyber-physical systems (CPSs) offer precise monitoring and control and present a promising avenue for PLF but pose significant implementation challenges.</p>
<p> In this work, a generalizable CPS architecture was formalized with active robotic nodes that can realize adaptive continuous real-time animal health monitoring to maximize productivity, animal welfare, and sustainability. Taking the example of dairy farming, a resource- and criticality-aware CPS was developed that enables real-time resource-aware sensing, adaptive control, and agile networking with an emphasis on handling emergencies autonomously. Using a decentralized approach, each node was made capable of optimizing its operation to be resource conscious, while also being able to identify emergency conditions in real-time. In this novel design, we accommodate the social dynamics of the herd and effectively address the various types of emergencies possible in PLF. Moreover, the communication was customized for the unique needs of animal agriculture, wherein it reduced latency and power consumption while ensuring collision-free two-way synchronization with adaptive range extension for emergency conditions. Further, since the CPS was centered around animals, a special robust security layer was also developed and implemented to protect the active embodied nodes against known and unknown malicious attacks. The proposed CPS reference architecture provides a foundation for implementing individualized care and welfare, ultimately improving the efficiency and sustainability of livestock operations.</p>
|
179 |
A Semantic Situation Awareness Framework for Indoor Cyber-Physical SystemsDesai, Pratikkumar 29 May 2013 (has links)
No description available.
|
180 |
Mitigating Emergent Safety and Security Incidents of CPS by a Protective ShellWagner, Leonard 07 November 2023 (has links)
In today's modern world, Cyber-Physical Systems (CPS) have gained widespread prevalence, offering tremendous benefits while also increasing society's dependence on them. Given the direct interaction of CPS with the physical environment, their malfunction or compromise can pose significant risks to human life, property, and the environment. However, as the complexity of CPS rises due to heightened expectations and expanded functional requirements, ensuring their trustworthy operation solely during the development process becomes increasingly challenging.
This thesis introduces and delves into the novel concept of the 'Protective Shell' – a real-time safeguard actively monitoring CPS during their operational phases. The protective shell serves as a last line of defence, designed to detect abnormal behaviour, conduct thorough analyses, and initiate countermeasures promptly, thereby mitigating unforeseen risks in real-time.
The primary objective of this research is to enhance the overall safety and security of CPS by refining, partly implementing, and evaluating the innovative protective shell concept. To provide context for collaborative systems working towards higher objectives — common within CPS as system-of-systems (SoS) — the thesis introduces the 'Emergence Matrix'. This matrix categorises outcomes of such collaboration into four quadrants based on their anticipated nature and desirability. Particularly concerning are outcomes that are both unexpected and undesirable, which frequently serve as the root cause of safety accidents and security incidents in CPS scenarios. The protective shell plays a critical role in mitigating these unfavourable outcomes, as conventional vulnerability elimination procedures during the CPS design phase prove insufficient due to their inability to proactively anticipate and address these unforeseen situations.
Employing the design science research methodology, the thesis is structured around its iterative cycles and the research questions imposed, offering a systematic exploration of the topic. A detailed analysis of various safety accidents and security incidents involving CPS was conducted to retrieve vulnerabilities that led to dangerous outcomes. By developing specific protective shells for each affected CPS and assessing their effectiveness during these hazardous scenarios, a generic core for the protective shell concept could be retrieved, indicating general characteristics and its overall applicability.
Furthermore, the research presents a generic protective shell architecture, integrating advanced anomaly detection techniques rooted in explainable artificial intelligence (XAI) and human machine teaming. While the implementation of protective shells demonstrate substantial positive impacts in ensuring CPS safety and security, the thesis also articulates potential risks associated with their deployment that require careful consideration.
In conclusion, this thesis makes a significant contribution towards the safer and more secure integration of complex CPS into daily routines, critical infrastructures and other sectors by leveraging the capabilities of the generic protective shell framework.:1 Introduction
1.1 Background and Context
1.2 Research Problem
1.3 Purpose and Objectives
1.3.1 Thesis Vision
1.3.2 Thesis Mission
1.4 Thesis Outline and Structure
2 Design Science Research Methodology
2.1 Relevance-, Rigor- and Design Cycle
2.2 Research Questions
3 Cyber-Physical Systems
3.1 Explanation
3.2 Safety- and Security-Critical Aspects
3.3 Risk
3.3.1 Quantitative Risk Assessment
3.3.2 Qualitative Risk Assessment
3.3.3 Risk Reduction Mechanisms
3.3.4 Acceptable Residual Risk
3.4 Engineering Principles
3.4.1 Safety Principles
3.4.2 Security Principles
3.5 Cyber-Physical System of Systems (CPSoS)
3.5.1 Emergence
4 Protective Shell
4.1 Explanation
4.2 System Architecture
4.3 Run-Time Monitoring
4.4 Definition
4.5 Expectations / Goals
5 Specific Protective Shells
5.1 Boeing 737 Max MCAS
5.1.1 Introduction
5.1.2 Vulnerabilities within CPS
5.1.3 Specific Protective Shell Mitigation Mechanisms
5.1.4 Protective Shell Evaluation
5.2 Therac-25
5.2.1 Introduction
5.2.2 Vulnerabilities within CPS
5.2.3 Specific Protective Shell Mitigation Mechanisms
5.2.4 Protective Shell Evaluation
5.3 Stuxnet
5.3.1 Introduction
5.3.2 Exploited Vulnerabilities
5.3.3 Specific Protective Shell Mitigation Mechanisms
5.3.4 Protective Shell Evaluation
5.4 Toyota 'Unintended Acceleration' ETCS
5.4.1 Introduction
5.4.2 Vulnerabilities within CPS
5.4.3 Specific Protective Shell Mitigation Mechanisms
5.4.4 Protective Shell Evaluation
5.5 Jeep Cherokee Hack
5.5.1 Introduction
5.5.2 Vulnerabilities within CPS
5.5.3 Specific Protective Shell Mitigation Mechanisms
5.5.4 Protective Shell Evaluation
5.6 Ukrainian Power Grid Cyber-Attack
5.6.1 Introduction
5.6.2 Vulnerabilities in the critical Infrastructure
5.6.3 Specific Protective Shell Mitigation Mechanisms
5.6.4 Protective Shell Evaluation
5.7 Airbus A400M FADEC
5.7.1 Introduction
5.7.2 Vulnerabilities within CPS
5.7.3 Specific Protective Shell Mitigation Mechanisms
5.7.4 Protective Shell Evaluation
5.8 Similarities between Specific Protective Shells
5.8.1 Mitigation Mechanisms Categories
5.8.2 Explanation
5.8.3 Conclusion
6 AI
6.1 Explainable AI (XAI) for Anomaly Detection
6.1.1 Anomaly Detection
6.1.2 Explainable Artificial Intelligence
6.2 Intrinsic Explainable ML Models
6.2.1 Linear Regression
6.2.2 Decision Trees
6.2.3 K-Nearest Neighbours
6.3 Example Use Case - Predictive Maintenance
7 Generic Protective Shell
7.1 Architecture
7.1.1 MAPE-K
7.1.2 Human Machine Teaming
7.1.3 Protective Shell Plugin Catalogue
7.1.4 Architecture and Design Principles
7.1.5 Conclusion Architecture
7.2 Implementation Details
7.3 Evaluation
7.3.1 Additional Vulnerabilities introduced by the Protective Shell
7.3.2 Summary
8 Conclusion
8.1 Summary
8.2 Research Questions Evaluation
8.3 Contribution
8.4 Future Work
8.5 Recommendation
|
Page generated in 0.0449 seconds