• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 9
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 106
  • 106
  • 69
  • 52
  • 43
  • 41
  • 32
  • 31
  • 28
  • 18
  • 15
  • 13
  • 12
  • 12
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Fast wave heating of cyclotron resonant ions in tokamaks

Johnson, Thomas January 2004 (has links)
QC 20100622
102

Mass-Selected Infrared Multiple-Photon Dissociation as a Structural Probe of Gaseous Ion-Molecule Complexes

Marta, Richard 27 August 2009 (has links)
Mass-selected infrared multiple photon spectroscopy (IRMPD), Fourier transform ion cyclotron resonance (FT-ICR) kinetic experiments, RRKM and electronic structure calculations have been performed in order to propose a complex mechanism involving the formation of the proton-bound dimer of water (H5O2+) from 1,1,3,3-tetrafluorodimethyl ether. It has been found that the reaction is facilitated by a series of sequential exothermic bimolecular ion-molecule reactions. Evidence for the dominant mechanistic pathway involving the reaction of CF2H-O=CHF+, an ion of m/z 99, with water is presented. The primary channel occurs via nucleophilic attack of water on the ion of m/z 99 (CF2H-O=CHF+), to lose formyl fluoride and yield protonated difluoromethanol (m/z 69). Association of a second water molecule with protonated difluoromethanol generates a reactive intermediate which decomposes via a 1,4-elimination to release hydrogen fluoride and yield the proton-bound dimer of water and formyl fluoride (m/z 67). The 1,4-elimination of hydrogen fluoride is found to be strongly supported by the results of both RRKM theory and electronic structure calculations. Lastly, the elimination of formyl fluoride occurs by the association of a third water molecule to produce H5O2+ (m/z 37). The most probable isomeric forms of the ions with m/z 99 and 69 were found using IRMPD spectroscopy and electronic structure theory calculations. Thermochemical information for reactant, transition and product species was obtained using MP2/aug-cc-pVQZ//MP2(full)/6-31G(d) level of theory. Ionic hydrogen bond (IHB) interactions, resulting from the association of ammonia and two of the protonated methylxanthine derivatives, caffeine and theophylline, have been characterized using mass-selected IRMPD and electronic structure calculations at the MP2/aug-cc-pVTZ//B3LYP/6-311+G(d,p) level of theory. It was found that the formation of a proton-bound dimer (PBD) of caffeine and ammonia was elusive under the experimental conditions. The low binding energy of the caffeine and ammonia PBD is responsible for the perceived difficulty in obtaining an IRMPD spectrum. The IRMPD spectrum of the PBD of theophylline and ammonia was obtained and revealed bidentate IHB formation within the complex, which greatly increased the binding energy relative to the most stable isomer of the PBD of caffeine and ammonia. The IRMPD spectra of the protonated forms of caffeine and theophylline have also obtained. The spectrum of protonated caffeine showed the dominant existence of a single isomer, whereas the spectrum of protonated theophylline showed a mixture of isomers. The mixture of isomers of protonated theophylline resulted as a consequence of proton-transport catalysis (PTC) occurring within the PBD of theophylline and ammonia. All calculated harmonic spectra have been produced at the B3LYP/6-311+G(d,p) level of theory with fundamental frequencies scaled by 0.9679; calculated anharmonic spectra have also been provided at the same level of theory and were found to greatly improve the match with the IRMPD spectra obtained in all cases. Ionic hydrogen bond (IHB) interactions, resulting from the association of caffeine and theophylline with their protonated counterparts, forming proton-bound homodimers, have been characterized using mass-selected IRMPD and electronic structure calculations at the MP2/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) level of theory. It is found that the IRMPD spectra of the proton-bound homodimers of caffeine and theophylline are complicated resulting from the existence of several pairs of enantiomers separated by a narrow range of relative Gibbs free energies (298 K) of 15.6 and 18.2 kJ mol-1, respectively. The IRMPD spectrum of the proton-bound homodimer of theophylline is dominated by a unique isomer facilitated by formation of a bidentate IHB. Formation of this interaction lowers the relative Gibbs free energy of the ion to 9.75 kJ mol-1 below that of the most favourable pair of enantiomers. The IRMPD spectrum of the PBD of caffeine is complicated by the existence of at least two pairs of enantiomers with the strong likelihood of the spectral contributions of a third pair existing. The most favourable enantiomeric pair involves the formation of a O-H+⋯O IHB. However, verification of a pair of enantiomeric PBDs containing a N-H+⋯O IHB is also observed in the IRMPD spectrum of the PBD of caffeine due to the presence of three free carbonyl stretching modes located at 1731, 1751 and 1785 cm-1. The mass-selected IRMPD spectra of the sodium cation-bound dimers (SCBD) of caffeine and theophylline also have been obtained. Both the mass-selected IRMPD spectra and electronic structure calculations predict the most likely structure of the SCBDs of caffeine and theophylline to form by an efficient O⋯Na+⋯O interaction between C=O functional groups possessed by each monomer. The frequencies of the C=O-Na+ stretch are found to be nearly identical in the IRMPD spectra for both of the SCBDs of caffeine and theophylline at 1644 and 1646 cm-1, respectively. However, the degenerate free C=O symmetric and asymmetric stretches for the SCBDs of caffeine and theophylline found at 1732 and 1758 cm^(-1), respectively, demonstrating a red-shift for caffeine possibly linked to a steric interaction absent in theophylline. Free rotation about the O⋯Na+⋯O bond is found to greatly decrease the complexity of the IRMPD spectra of the SCBDs of caffeine and theophylline and demonstrates excellent agreement between the IRMPD and calculated spectra. Electronic structure calculations have been done at the MP2(full)/aug-cc-pCVTZ/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) level of theory using the aug-cc-pCVTZ basis set for Na+ and all Na+-interacting heterotatoms, and the 6-311+G(2d,2p) basis set for all non-interacting atoms within the SCBDs, in order to provide accurate electronic energies. Currently, installation and implementation of a pulsed electrospray high pressure ion source mated to an existing high pressure mass spectrometer (HPMS) is underway. The new ion source will greatly increase the range of possibilities for the study of ion-molecule reactions in the McMahon laboratory. One of the unique features of the new design is the incorporation of a gas-tight electrospray interface, allowing for more possibilities than only the study of cluster-ion equilibria involving hydration (H2On⋯S+), where S+ is an ion produced by electrospray. Other small prototypical biological molecules such as amines and thiols can be used without concern for the toxicity of these species. Another unique design feature allows electrosprayed ions to associate with neutral solvent species in an electric field free reaction chamber (RC). This ensures that values of equilibrium constants determined are truly representative of ions in states of thermochemical equilibrium. The existing HPMS in the McMahon laboratory is limited to the study of small volatile organic molecules. The new ion source will permit the exploration of systems involving non-volatile species, doubly charged ions and many biologically relevant molecules such as amino acids, peptides, nucleobases and carbohydrates.
103

Mass-Selected Infrared Multiple-Photon Dissociation as a Structural Probe of Gaseous Ion-Molecule Complexes

Marta, Richard 27 August 2009 (has links)
Mass-selected infrared multiple photon spectroscopy (IRMPD), Fourier transform ion cyclotron resonance (FT-ICR) kinetic experiments, RRKM and electronic structure calculations have been performed in order to propose a complex mechanism involving the formation of the proton-bound dimer of water (H5O2+) from 1,1,3,3-tetrafluorodimethyl ether. It has been found that the reaction is facilitated by a series of sequential exothermic bimolecular ion-molecule reactions. Evidence for the dominant mechanistic pathway involving the reaction of CF2H-O=CHF+, an ion of m/z 99, with water is presented. The primary channel occurs via nucleophilic attack of water on the ion of m/z 99 (CF2H-O=CHF+), to lose formyl fluoride and yield protonated difluoromethanol (m/z 69). Association of a second water molecule with protonated difluoromethanol generates a reactive intermediate which decomposes via a 1,4-elimination to release hydrogen fluoride and yield the proton-bound dimer of water and formyl fluoride (m/z 67). The 1,4-elimination of hydrogen fluoride is found to be strongly supported by the results of both RRKM theory and electronic structure calculations. Lastly, the elimination of formyl fluoride occurs by the association of a third water molecule to produce H5O2+ (m/z 37). The most probable isomeric forms of the ions with m/z 99 and 69 were found using IRMPD spectroscopy and electronic structure theory calculations. Thermochemical information for reactant, transition and product species was obtained using MP2/aug-cc-pVQZ//MP2(full)/6-31G(d) level of theory. Ionic hydrogen bond (IHB) interactions, resulting from the association of ammonia and two of the protonated methylxanthine derivatives, caffeine and theophylline, have been characterized using mass-selected IRMPD and electronic structure calculations at the MP2/aug-cc-pVTZ//B3LYP/6-311+G(d,p) level of theory. It was found that the formation of a proton-bound dimer (PBD) of caffeine and ammonia was elusive under the experimental conditions. The low binding energy of the caffeine and ammonia PBD is responsible for the perceived difficulty in obtaining an IRMPD spectrum. The IRMPD spectrum of the PBD of theophylline and ammonia was obtained and revealed bidentate IHB formation within the complex, which greatly increased the binding energy relative to the most stable isomer of the PBD of caffeine and ammonia. The IRMPD spectra of the protonated forms of caffeine and theophylline have also obtained. The spectrum of protonated caffeine showed the dominant existence of a single isomer, whereas the spectrum of protonated theophylline showed a mixture of isomers. The mixture of isomers of protonated theophylline resulted as a consequence of proton-transport catalysis (PTC) occurring within the PBD of theophylline and ammonia. All calculated harmonic spectra have been produced at the B3LYP/6-311+G(d,p) level of theory with fundamental frequencies scaled by 0.9679; calculated anharmonic spectra have also been provided at the same level of theory and were found to greatly improve the match with the IRMPD spectra obtained in all cases. Ionic hydrogen bond (IHB) interactions, resulting from the association of caffeine and theophylline with their protonated counterparts, forming proton-bound homodimers, have been characterized using mass-selected IRMPD and electronic structure calculations at the MP2/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) level of theory. It is found that the IRMPD spectra of the proton-bound homodimers of caffeine and theophylline are complicated resulting from the existence of several pairs of enantiomers separated by a narrow range of relative Gibbs free energies (298 K) of 15.6 and 18.2 kJ mol-1, respectively. The IRMPD spectrum of the proton-bound homodimer of theophylline is dominated by a unique isomer facilitated by formation of a bidentate IHB. Formation of this interaction lowers the relative Gibbs free energy of the ion to 9.75 kJ mol-1 below that of the most favourable pair of enantiomers. The IRMPD spectrum of the PBD of caffeine is complicated by the existence of at least two pairs of enantiomers with the strong likelihood of the spectral contributions of a third pair existing. The most favourable enantiomeric pair involves the formation of a O-H+⋯O IHB. However, verification of a pair of enantiomeric PBDs containing a N-H+⋯O IHB is also observed in the IRMPD spectrum of the PBD of caffeine due to the presence of three free carbonyl stretching modes located at 1731, 1751 and 1785 cm-1. The mass-selected IRMPD spectra of the sodium cation-bound dimers (SCBD) of caffeine and theophylline also have been obtained. Both the mass-selected IRMPD spectra and electronic structure calculations predict the most likely structure of the SCBDs of caffeine and theophylline to form by an efficient O⋯Na+⋯O interaction between C=O functional groups possessed by each monomer. The frequencies of the C=O-Na+ stretch are found to be nearly identical in the IRMPD spectra for both of the SCBDs of caffeine and theophylline at 1644 and 1646 cm-1, respectively. However, the degenerate free C=O symmetric and asymmetric stretches for the SCBDs of caffeine and theophylline found at 1732 and 1758 cm^(-1), respectively, demonstrating a red-shift for caffeine possibly linked to a steric interaction absent in theophylline. Free rotation about the O⋯Na+⋯O bond is found to greatly decrease the complexity of the IRMPD spectra of the SCBDs of caffeine and theophylline and demonstrates excellent agreement between the IRMPD and calculated spectra. Electronic structure calculations have been done at the MP2(full)/aug-cc-pCVTZ/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) level of theory using the aug-cc-pCVTZ basis set for Na+ and all Na+-interacting heterotatoms, and the 6-311+G(2d,2p) basis set for all non-interacting atoms within the SCBDs, in order to provide accurate electronic energies. Currently, installation and implementation of a pulsed electrospray high pressure ion source mated to an existing high pressure mass spectrometer (HPMS) is underway. The new ion source will greatly increase the range of possibilities for the study of ion-molecule reactions in the McMahon laboratory. One of the unique features of the new design is the incorporation of a gas-tight electrospray interface, allowing for more possibilities than only the study of cluster-ion equilibria involving hydration (H2On⋯S+), where S+ is an ion produced by electrospray. Other small prototypical biological molecules such as amines and thiols can be used without concern for the toxicity of these species. Another unique design feature allows electrosprayed ions to associate with neutral solvent species in an electric field free reaction chamber (RC). This ensures that values of equilibrium constants determined are truly representative of ions in states of thermochemical equilibrium. The existing HPMS in the McMahon laboratory is limited to the study of small volatile organic molecules. The new ion source will permit the exploration of systems involving non-volatile species, doubly charged ions and many biologically relevant molecules such as amino acids, peptides, nucleobases and carbohydrates.
104

Προσομοίωση ηλεκτρομαγνητικής συμπεριφοράς σε αντιδραστήρες αερίων χαμηλής πίεσης και ασθενούς ιονισμού

Σφήκας, Σπυρίδων 19 April 2010 (has links)
Οι πηγές πλάσματος επαγωγικής ζεύξης (Inductively Coupled Plasma Sources – ICP’s), παρέχουν πλάσμα υψηλής πυκνότητας ηλεκτρονίων σε χαμηλή πίεση και έχουν ευρεία εφαρμογή στη σύγχρονη βιομηχανία ημιαγωγών και την κατεργασία επιφανειών. Σε πολύ χαμηλές πιέσεις, (~mTorr), οι εκκενώσεις πλάσματος παρουσιάζουν ιδιαίτερη συμπεριφορά όσον αφορά τη διείσδυση του ηλεκτρομαγνητικού πεδίου και την αλληλεπίδραση κύματος-σωματιδίου: Η ανώμαλη επιδερμική διείσδυση (anomalous skin effect) και η συντονισμένη αλληλεπίδραση κύματος-σωματιδίου όταν υπερτίθεται στατικό μαγνητικό πεδίο (resonant wave-particle interaction) είναι δύο φαινόμενα τυπικά σε αυτές τις εκκενώσεις. Η κατανόηση και μαθηματική ανάλυση αυτών των ιδιαίτερα περίπλοκων φαινομένων, ώστε να προσομοιωθούν με ακρίβεια αλλά και χωρίς χρονοβόρες υπολογιστικά διαδικασίες οι πηγές πλάσματος επαγωγικής ζεύξης, αποτελεί μια σύγχρονη επιστημονική και υπολογιστική πρόκληση. Στα πλαίσια αυτά, στην παρούσα διατριβή τέθηκε ως στόχος η αξιοποίηση της υπάρχουσας επιστημονικής γνώσης στον τομέα της υπολογιστικής προσομοίωσης πλάσματος, για την ανάπτυξη ταχύτατων προσομοιώσεων των πηγών πλάσματος επαγωγικής ζεύξης, διασφαλίζοντας ταυτόχρονα την εξαγωγή έγκυρων συμπερασμάτων: Η προσέγγιση αυτή συνίσταται στη διατύπωση υπόθεσης (μοντέλου), τον έλεγχό της σε σχέση με υπάρχοντα δεδομένα και την επαναδιατύπωσή της μέχρις ότου το μοντέλο να κριθεί επαρκές. Αρχικά αναπτύχθηκε ένα ρευστοδυναμικό μοντέλο πλάσματος βασισμένο στην υπόθεση ψευδουδετερότητας και αμφιπολικής διάχυσης των φορέων φορτίου, προκειμένου να προσομοιωθεί η ενισχυμένης μαγνητικής διαπερατότητας πηγή επαγωγικής ζεύξης MaPE–ICP. Τα αποτελέσματα της προσομοίωσης συγκρίνονται με τα πειραματικά στοιχεία προηγούμενων ερευνητών για εκκενώσεις Αργού και εξετάζεται η ικανότητα του ρευστοδυναμικού μοντέλου να παρέχει μια στοιχειώδη ποσοτική περιγραφή πλάσματος επαγωγικής ζεύξης σε χαμηλή πίεση. Η αξιοπιστία του ρευστοδυναμικού μοντέλου εξελίσσεται περεταίρω, με την ενσωμάτωση μιας αποτελεσματικής αριθμητικής επίλυσης της κινητικής εξίσωσης Boltzmann για τα ηλεκτρόνια. Τα αποτελέσματα της υβριδικής προσομοίωσης για εκκένωση Αργού πίεσης 30 mTorr στον αντιδραστήρα MaPE–ICP συγκρίνονται τόσο με αντίστοιχα πειραματικά δεδομένα όσο και με τα προηγούμενα αποτελέσματα της ρευστοδυναμικής προσομοίωσης και εξετάζεται η βελτίωση της ποιοτικής συμφωνίας όσον αφορά την επίδραση των παραμέτρων με ιδιαίτερο ενδιαφέρον. Στη συνέχεια αναπτύχθηκε ένα ρευστοδυναμικό μοντέλο εκκενώσεων αίγλης τύπου ECWR (Electron Cyclotron Wave Resonance) βασισμένο σε προκαθορισμένες οριακές συνθήκες για το ηλεκτρομαγνητικό πεδίο. Προσομοιώθηκε ένα διάκενο με πλάσμα Αργού σε πίεση 15 mTorr (μονοδιάστατο μοντέλο) και τα αποτελέσματα ελέγχθηκαν έναντι αναλυτικής θεωρίας, πειραματικών δεδομένων και αποτελεσμάτων προσομοίωσης Particle In Cell/Monte Carlo (PIC/MC). Επιπρόσθετα, τα αποτελέσματα προσομοίωσης για μια εκκένωση Αργού σε πίεση 1 mTorr εντός κυλινδρικού αντιδραστήρα τύπου ECWR (δισδιάστατο μοντέλο), συγκρίνονται με τα αποτελέσματα προσομοίωσης και πειραματικά στοιχεία. Τέλος, το μοντέλο έχει επεκταθεί για να περιλάβει την διάδοση του πλάσματος που παράγεται από μια τυπική πηγή πλάσματος τύπου ECWR σε μια περιοχή διάχυσης. Τα αποτελέσματα για εκκένωση Αργού πίεσης 5 mTorr συγκρίνονται με τα αντίστοιχα αποτελέσματα ενός μοντέλου σφαιρικής διάχυσης πλάσματος και εν προκειμένω εξετάζεται η πλήρης επεκτασιμότητα του εισαχθέντος ρευστοδυναμικού μοντέλου ECWR σε διεργασίες πλάσματος. / Inductively Coupled Plasma Sources (ICP’s) are capable of producing high density-low pressure plasmas in a variety of applications for the semiconductor and material processing industry. In the mTorr range, ICP discharges exhibit an extraordinary behaviour concerning the electromagnetic field propagation and wave-particle interaction: Anomalous skin effect and resonant wave-particle interaction within a superimposed static magnetic field consist two of the most typical phenomena. The efficient comprehension and mathematical description of such a complex gas discharge in order to fast and accurately simulate ICP sources, is still a challenging task. Within this context, the thesis focuses on evaluating the existing scientific knowledge in plasma computational modeling in order to develop not only rapidly converging but reliable ICP simulations: The implementation methodology consists on formulating an hypothesis (model) and repetitively inquiring its accuracy by checking the simulation results against existing experimental and/or other simulation data. The continuation of the model re-formulation process depends on the accuracy of the simulation results. Initally a simulation of a Magnetic Pole Enhanced (MaPE)-ICP plasma source was developed, under the assumptions of plasma quasineutrality and ambipolar diffusion. The simulation results were checked against the experimental data of previous workers for Argon discharges and the ability of the model to provide an elementary quantitative description of low pressure ICP sources was scrutinized. The validity of the fluid model was enhanced with the incorporation of a time effective numerical solution of the Boltzmann transport equation for electrons. Simulation results of the hybrid model were compared to the previous fluid simulation results and existing experimental data, for a 30 mTorr Argon discharge in the MaPE–ICP reactor. The major improvements of the qualitative agreement in regard to the effect of parameters with particular interest are discussed. Moreover, a fluid model of ECWR (Electron Cyclotron Wave Resonance) discharges, based on predefined boundary conditions for the electromagnetic field, was developed: The simulation results for a 15 mTorr Argon plasma within a slab (1-dimensional model) were checked against the particle in cell/Monte Carlo (PIC/MC) simulation results that can be found in the literature and also compared to the analytical theory and experimental data. In addition, the model was further developed to simulate realistic geometries as a cylindrical ECWR reactor (2-D) and the data were also compared to both simulation results and experimental data of other researchers. Finally, the model was extended in order to simulate plasma propagation from a typical ECWR plasma source to a diffusion region. The simulation results for an Argon plasma generated from a cylindrical ECWR source in a processing chamber at 5 mTorr were presented in order to verify the feasibility of model application in ECWR plasma processes.
105

Entwicklung und Charakterisierung einer Elektron-Zyklotron-Resonanz-Ionenquelle mit integriertem Sputtermagnetron für die Erzeugung intensiver Strömeeinfach geladener Aluminiumionen: Entwicklung und Charakterisierung einer Elektron-Zyklotron-Resonanz-Ionenquelle mit integriertem Sputtermagnetron für die Erzeugung intensiver Ströme einfach geladener Aluminiumionen

Weichsel, Tim 12 July 2016 (has links)
Es wurde eine Elektron-Zyklotron-Resonanz-Ionenquelle mit einer Mikrowellenfrequenz von2,45 GHz für die Produktion intensiver Ströme einfach geladener Metallionen entwickelt. Deren Beladung mit Metalldampf erfolgt über ein integriertes zylindrisches Sputtermagnetron, welches speziell für diese Aufgabe entworfen wurde. Die entstandene MECRIS, engl. Magnetron Electron Cyclotron Resonance Ion Source, vereinigt die ECR-Ionenquellentechnologie mit der Magnetron-Sputtertechnologie auf bisher einzigartige Weise und verkörpert so ein neues Metallionen-Quellenkonzept. Unter Verwendung eines Al-Sputtertargets konnte die Funktionsfähigkeit der MECRIS an dem Beispiel der Al+-Ionenerzeugung erfolgreich demonstriert werden. Der extrahierbare Al+-Ionenstrom wurde über einen neuartigen, im Rahmen der Arbeit entwickelten, Hochstrom-Faraday-Cup gemessen. Auf Basis numerischer Berechnungen wurde das Gesamtmagnetfeld so ausgelegt, dass die Permanentmagnete des Magnetrons und die Spulen der ECR-Quelle eine Minimum-B-Struktur erzeugen, welche einen effektiven Elektroneneinschluss nach dem magnetischen Spiegelprinzip ermöglicht. Gleichzeitig wird durch eine geschlossene ECR-Fläche, mit der magnetischen Resonanzflussdichte von 87,5 mT, eine optimale Heizung der Plasmaelektronen realisiert. Die mithilfe einer Doppel-Langmuir-Sonde gemessene Elektronentemperatur steigt in Richtung Quellenmitte an und beträgt maximal 11 eV. Geheizte Elektronen erlauben die effiziente Stoßionisation der Al-Atome, welche mit einer Rate von über 1E18 Al-Atome/s eingespeist werden und eine höchstmögliche Dichte von 2E10 1/cm³ aufweisen. Die MECRIS erzeugt hauptsächlich einfach geladene Ionen des gesputterten Materials (Al+) und des Prozessgases (Ar+). Der Al+-Ionenextraktionsstrom ist über die Erhöhung der Prozessparameter Sputterleistung, Mikrowellenleistung, Spulenstrom und Extraktionsspannung um eine Größenordnung bis auf maximal 135 μA steigerbar, was einer Stromdichte von 270 μA/cm² über die Extraktionsfläche von rund 0,5 cm² entspricht. Dies steht im Einklang mit der Prozessparameterabhängigkeit der anhand der Sonde bestimmten Plasmadichte, welche einen größtmöglichen Wert von etwa 6E11 1/cm³ annimmt. Das Verhältnis von extrahiertem Al+- zu Ar+-Ionenstrom kann durch Optimierung der Prozessparameter von 0,3 auf maximal 2 angehoben werden. Sondenmessungen des entsprechenden Ionendichteverhältnisses bestätigen diesen Sachverhalt. Um möglichst große Extraktionsströme und Al+/Ar+-Verhältnisse zu generieren, muss die ECR-Fläche demnach in dem Bereich der höchsten Al-Atomdichte in der Targetebene lokalisiert sein. Gegenüber dem alleinigen Magnetronplasma (ohne Mikrowelleneinspeisung) können mit dem MECRIS-Plasma um bis zu 140 % höhere Al+-Ionenströme produziert werden. Aus Sondenuntersuchungen geht hervor, dass dies eine Folge der um etwa eine Größenordnung gesteigerten Plasmadichte und der um rund 7 eV größeren Elektronentemperatur des MECRIS-Plasmas ist. Das MECRIS-Plasma wurde außerdem mittels optischer Emissionsspektroskopie charakterisiert und durch ein globales sowie ein zweidimensionales Modell simuliert. Die gewonnenen Prozessparameterabhängigkeiten der Plasmadichte, Elektronentemperatur sowie Al+- und Ar+-Ionendichte stimmen mit den Sondenergebnissen überein. Teilweise treten jedoch Absolutwertunterschiede von bis zu zwei Größenordnungen auf. Die Erhöhung der Sputterleistung und Extraktionsspannung über die derzeitigen Grenzen von 10 kW bzw. 30 kV sowie die Optimierung der Extraktionseinheit hinsichtlich minimaler Elektrodenblindströme bietet das Potential, den Al+-Ionenstrom bis in den mA-Bereich zu steigern. / An electron cyclotron resonance ion source working at a microwave frequency of 2.45 GHz has been developed in order to generate an intense current of singly charged metal ions. It is loaded with metal vapor by an integrated cylindrical sputter magnetron, which was especially designed for this purpose. The MECRIS (Magnetron Electron Cyclotron Resonance Ion Source) merges ECR ion source technology with sputter magnetron technology in a unique manner representing a new metal ion source concept. By using an Al sputter target, the efficiency of the MECRIS was demonstrated successfully for the example of Al+ ion production. The extractable ion current was measured by a newly developed high-current Faraday cup. On the basis of numerical modeling, the total magnetic field was set in a way that the permanent magnets of the magnetron and the coils of the ECR source are forming a minimum-B-structure, providing an effective electron trap by the magnetic mirror principle. Simultaneously, optimal electron heating is achieved by a closed ECR-surface at resonant magnetic flux density of 87.5 mT. Electron temperature increases towards the center of the source to a maximum of about 11 eV and was measured by a double Langmuir probe. Due to the heated electron population, efficient electron impact ionization of the Al atoms is accomplished. Al atoms are injected with a rate of more than 1E18 Al-atoms/s resulting in a maximum Al atom density of 2E10 1/cm³. The MECRIS produces mainly singly charged ions of the sputtered material (Al+) and the process gas (Ar+). The Al+ ion extraction current is elevated by one order of magnitude to a maximum of 135 μA by increasing the process parameters sputter magnetron power, microwave power, coil current, and acceleration voltage. Related to the extraction area of about 0.5 cm², the highest possible Al+ ion current density is 270 μA/cm². A corresponding process parameter dependency was found for the plasma density showing a peak value of about 6E11 1/cm³, which was deduced from probe measurements. The ratio of the extracted Al+ ion current to the Ar+ ion current can be enhanced from 0.3 to a maximum of 2 by optimization of the process parameters. This was confirmed by probe investigations of the appropriate ion density ratio. In conclusion, the ECR-surface needs to be located in the area of the highest Al atom density in the target plane in order to improve the extraction current and Al+/Ar+ ratio. The MECRIS plasma produces an Al+ ion current, which is up to 140 % higher compared to that of the sole sputter magnetron plasma (without microwave injection). As revealed by probe measurements, this effect is due to the higher plasma density and electron temperature of the MECRIS plasma, leading to a difference of one order of magnitude and 7 eV, respectively. Additionally, the MECRIS plasma has been characterized by optical emission spectroscopy and simulated by a global and a two-dimensional model. Retrieved process parameter dependencies of plasma density, electron temperature, Al+ ion density, and Ar+ ion density coincide with probe findings. Although a discrepancy of the absolute values of partly up to two orders of magnitude is evident. Potentially, the Al+ ion current can be enhanced to the mA-region by optimizing the ion extraction system for minimal idle electrode currents and by rising sputter magnetron power as well as acceleration voltage above the actual limits of 10 kW and 30 kV, respectively.
106

One-Dimensional Velocity Distributions of Fast Ions under RF Heating Including Doppler Shift in Tokamaks

Bähner, Lukas January 2022 (has links)
The goal of nuclear fusion research is to create a clean and virtually limitless energy source. In order to that, a plasma must be heated to hundreds of millions degrees Celsius. A commonly used heating mechanism is ion cyclotron resonance heating, where antennas emit radio waves into the plasma. The wave can resonate with the ions at their cyclotron frequency, which leads to wave absorption. In order to investigate and improve the heating, one can perform computer simulations. FEMIC is a finite element model for ICRH that calculates the wave field created by the antennas. However, this code does not take into account how the wave modifies the velocity distribution of the plasma. Therefore, a time-independent Fokker-Planck solver is implemented that computes the fast ion distribution due to the incident wave field calculated with FEMIC. The novelty of this code is to include Doppler shift, which influences where ions resonate and how they are heated. / Målet med fusionsforskningen är att skapa en ren energikälla som kan producera obegränsade mängder energi. För detta krävs att ett plasma värms till hundratals miljoner grader Celsius. En vanlig teknik för att värma plasmat är joncyklotronuppvärmning, där en antenn emitterar radiovågor som propagerar in i plasmat. Om vågen är i resonans med jonernas cyklotronrörelse leder detta till att vågen absorberas av jonerna. För att studera och utveckla denna uppvärmningsteknik kan man använda datorsimuleringar. FEMIC är en kod baserad på den finita elementmetoden som beräknar vågfälten som skapas av antennen. Med denna kod kan vi dock inte beräkna hur vågen påverkar jonernas fördelningsfunktioner. Därför har en Fokker-Planck-lösare implementerats som kan beräkna fördelningen av snabba joner som accelererats av vågfältet från FEMIC. Det nya i denna modell är att koden tar hänsyn till Dopplerskiftet, vilket påverkar var jonerna är i resonans med vågen och hur de värms upp.

Page generated in 0.0605 seconds